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Isostaticity of constraints in amorphous jammed systems of soft frictionless Platonic solids
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The average number of constraints per particle 〈Ctotal〉 in mechanically stable amorphous systems of Platonic
solids approaches the isostatic limit at the jamming point (〈Ctotal〉 → 12), though average number of contacts
are hypostatic. By introducing angular alignment metrics to classify the degree of constraint imposed by each
contact, constraints are shown to arise as a direct result of local orientational order reflected in edge-face and
face-face alignment angle distributions. With approximately one face-face contact per particle at jamming,
chainlike face-face clusters form with finite extent—a signature of amorphous jammed systems.

DOI: 10.1103/PhysRevE.84.030301 PACS number(s): 45.70.Cc, 45.50.−j, 61.43.−j

Following Maxwell’s approach [1], jammed assemblies of
frictionless spheres exhibit an average number of contacts per
particle 〈Ztotal〉 equal to the isostatic value 2nf [2], where nf is
the degrees of freedom per particle. In contrast, ellipses [3,4],
ellipsoids [4], tetrahedra [5,6], and the remaining Platonic
solids [6] exhibit hypostatic behavior (〈Ztotal〉 < 2nf ). The
isostatic condition has been linked to the mechanical stability
of soft sphere systems [7], and the hypostaticity of ellipses
has been attributed to the presence of floppy vibrational
modes, which provide vanishing restoring force [3]. Jaoshvili
et al. [5] recently asserted that the average constraint number
〈Ctotal〉, which incorporates topology-dependent contact con-
straint (e.g., through vertex-face, edge-edge, edge-face, and
face-face contact topologies), is isostatic for tetrahedral dice
even though 〈Ztotal〉 < 2nf . Similar approaches incorporating
variable contact constraint have been utilized in the prediction
of mechanism mobility as early as 1890 (see Ref. [8]). The
presupposition underlying constraint counting as a valid means
of predicting net degrees of freedom is the mechanical inde-
pendence of constraints. As a result, such constraint counting
approaches fail to predict the true mobility of mechanisms
when kinematic redundancy is present (see Ref. [8]), and
isostatic 〈Ctotal〉 is not guaranteed at the jamming point. Though
constraint counting may yield an isostatic result, the validity
of this conclusion depends on the methods used to estimate
〈Ctotal〉 as we show in this Rapid Communication.

Additionally, packing density and structure of Platonic
solids have been the focus of recent studies. All Platonic solids
except for tetrahedra pack optimally in Bravais lattices [9].
In contrast, tetrahedra pack optimally in a highly ordered
double-dimer configuration [10–12]. “Random close-packed”
tetrahedral dice [5,13], athermally jammed tetrahedra [6], and
tetrahedroids [14] have exhibited dramatically lower densities
[5,6,13] and only short-range translational order [5,6]. Also,
athermally jammed tetrahedra exhibit a radial distribution
function and face-face orientational correlation function con-
sistent with densely packed experimental tetrahedral dice [6].
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The main goal of this Rapid Communication is to assess the
validity of generalized isostaticity [5] for amorphous jammed
systems of Platonic solids through energy-based structural
optimization and objective topological classification. We also
present jamming threshold density and show that these pack-
ings are vibrationally stable. The ill-conditioned vibrational
spectrum is a direct result of topological heterogeneity in the
contact network, and we therefore identify and highlight the
orientational order of contacts by introducing angular align-
ment metrics. Topology classification via angular alignment
metric distributions is thereby used to assess the isostaticity of
constraints.

Contact model and jamming protocol. Structural optimiza-
tion coupled with controlled consolidative and expansive strain
is used to probe the jamming point as in Ref. [6]. The
conservative model employed assumes that contact between
particles α and β results in energy Eαβ = YV 2/4Vp after a
Hookian contact model applied to uniaxially compressed bars,
where V is the intersection volume between the particles, Vp

is the volume of a single particle, and Y is the elastic modulus.
Conjugate gradient minimization with line searching is utilized
with a relative energy change convergence tolerance of less
than 10−12 at each strain step to simulate static equilibrium
(see Ref. [6]). Density is defined as φ = NVp/Vcell, where
Vcell and N are the volume and the number of particles in the
primary periodic cell.

Assemblies of monodisperse Platonic solids with periodic
cubic lattice boundary conditions were consolidated with
an average energy per particle near 3.2 × 10−5YVp from
low-density random configurations at φ = 0.05. Cubes have
been excluded from the present study because such systems
exhibit long-range orientational order [6] and hence are not
amorphous. Estimates of the jamming threshold density φJ

(Table I) were obtained by expansion toward the jamming point
as in Ref. [6]. φJ converges well at N = 100, but the results
differ somewhat from the “random close-packed” densities
measured by Ref. [13] for finite systems of rounded dice.
Unless otherwise stated, hereafter the results presented are for
N = 400.

Mechanical stability. We computed the low-energy vibra-
tional spectra of these monodisperse systems as ωi = √

λi/m
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TABLE I. Jamming threshold φJ estimated for each system with
95% confidence intervals.

N = 100 N = 400 Expt.a

Tetrahedra 0.629 ± 0.001 0.634 ± 0.011 0.64 ± 0.01
Octahedra 0.6796 ± 0.0003 0.686 ± 0.001 0.64 ± 0.01
Icosahedra 0.6953 ± 0.0003 0.7008 ± 0.0003 0.59 ± 0.01
Dodecahedra 0.7065 ± 0.0002 0.7085 ± 0.0003 0.63 ± 0.01

aValues presented in Ref. [13] for tetrahedral dice.

(as in Ref. [3]), where λi is the ith eigenvalue of the
dynamical matrix Dαβ = ∂2E/∂ rα∂ rβ and m is the particle
mass. Frequency ωi is presented in units of V

1/3
p

√
Y/ρ, where

ρ is the mass density of the solid phase. Coordinates rα of
particle α are composed of translational xi,α and rotational
θi,α components rα = {x1,α,x2,α,x3,α,Rαθ1,α,Rαθ2,α,Rαθ3,α},
where Rα is the radius of gyration. We calculate Dαβ through
central differences of forces and moments, considering only
its symmetric part. The resulting spectra of static equilibrium
systems with density nearest φJ are displayed in Fig. 1(a).
For static equilibrium systems at all densities we find 6N − 3
stable modes with three trivial (rigid-body) translational
modes, confirming that our soft packings are indeed stably
jammed as in Refs. [3] and [7]. This result also confirms
that all N particles participate in the mechanical network, and
therefore no rattlers exist.

The mean values of the 50 lowest and highest nontrivial
frequency modes 〈ωl〉 and 〈ωh〉 were computed and plotted
against excess density 
φ = φ − φJ [Fig. 1(b)]. The scaling
of 〈ωl〉 with respect to 
φ, 〈ωl〉 ∼ (
φ)2, reveals that these
packings are in fact marginally stable at φJ , while finite 〈ωh〉
persists at the jamming point [Fig. 1(b)]. The latter behavior
is a signature of translational vibrational modes involving
face-face contacts, because only such contact topologies
exhibit a harmonic (i.e., quadratic) energy variation and
consequently constant stiffness with respect to displacements
along the direction of contact force induced by straining
from φJ . By classifying contact topologies with methods
outlined subsequently, we have confirmed that these modes
are localized on clusters formed by face-face contacts. The
energies of these systems scale as E ∝ (
φ)6 [6], with bulk
modulus K scaling as K ∝ (
φ)4. Therefore, it is clear that

FIG. 1. (Color online) (a) Vibrational spectra for stable systems
nearest the jamming threshold. (b) The power-law scaling of 〈ωl〉
(lower curve set) and the asymptotically constant scaling of 〈ωh〉
(upper curve set).

low-frequency modes are excited by volumetric strain because
〈ωl〉 ∝ √

K ∝ (
φ)2.
Angular alignment. Soft contacts between faceted particles

can be classified as face-face, edge-face, vertex-face, or
edge-edge. Hereafter vertex-face and edge-edge contacts are
referred to as “lower order” since they exhibit less order
relative to face-face and edge-face contacts. Accordingly,
we define angular order metrics that approach zero as con-
tacts become oriented with perfect face-face or edge-face
alignment; these metrics could be measured experimentally
with tomographic reconstruction. The face-face alignment
angle θf -f,ql of contacting particles q and l is expressed
as θf -f,ql = π − cos−1[min(n̂T

qi n̂lj )], where n̂qi is the normal
vector of face i on particle q. The minimum is computed over
all combinations of i and j corresponding to intersecting faces
on the respective particles. The edge-face alignment angle
θe-f is calculated as the minimum of θe-f,ql and θe-f,lq , where
θe-f,ql = sin−1[min(|êT

qi n̂lj |)], and êqi is the unit edge vector of
edge i on particle q.

Randomly oriented faces and edges provide a starting point
for understanding alignment angle distributions in jammed
systems. Three-dimensional (3D) random edges and faces
possess a probability density of edge-face alignment with
p(θe-f ) ∝ cos(θe-f ). Edge-face contacts are therefore expected
to be ubiquitous in jammed systems, because probability is
weighted toward small θe-f . In contrast, face-face contacts are
expected to be less common, because 3D random faces possess
an alignment probability density that vanishes in the face-face
limit [p(θf -f ) ∝ sin(θf -f )]. On the other hand, p(θf -f ) for
edge-face constrained contacts exhibit a uniform nonvanishing
probability density.

Cumulative distribution functions (CDFs) are plotted in
Fig. 2 for all the contacts in one realization of each system in
addition to CDFs of ideal random systems. Simulated CDFs
exhibit critical angles plotted in Fig. 2 and listed in Table II
that bound the possible alignment angles for face-vertex, edge-
edge, and edge-face contact topologies; we denote critical
edge-face and face-face alignment angles as θe-f,c,i and θf -f,c,i ,
respectively, where i denotes the particular contact topology.
These angles correspond to pairs of particles contacting
with a particular topology oriented with the highest possible
symmetry. The angular breadth of c(θe-f ) spans proportional

FIG. 2. (Color online) CDFs of (a) θe-f and (b) θf -f for stable
systems nearest φJ . Points plotted on the simulated curves correspond
to c(θe-f,c,i) and c(θf -f,c,i). Region 1 of c(θf -f ) is masked in gray, while
region 2 extends from the edge of region 1 to θf -f,c, min, the minimum
critical face-face alignment angle. Ideal random CDFs for edge-face
constrained (open squares) and unconstrained (open circles) contacts
are displayed as well.
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TABLE II. Critical edge-face θe-f,c,i and face-face θf -f,c,i alignment angles for each topology i in degrees.

θe-f,c,i θf -f,c,i

Topology, i Vertex-face Edge-edge Vertex-face Edge-edge Edge-face

Tetrahedra 54.7 54.7 70.5 70.5 54.7
Octahedra 45.0 35.3 54.7 48.2 35.3
Dodecahedra 20.9 31.7 37.4 43.6 31.7
Icosahedra 31.7 20.9 37.4 29.2 20.9

to θe-f,c, min, the minimum critical edge-face alignment angle
among vertex-face and edge-edge contacts. This results in
particles with large θe-f,c, min having a low probability density
(i.e., the CDF slope) of near edge-face contacts. All systems
exhibit a hyper-random probability density at small θe-f with
the CDF approaching that of edge-face constrained contacts
[open squares, Fig. 2(a)].

Figure 2(b) shows that c(θf -f ) for all systems possess
three regions of descending probability density (i.e., the CDF
slope): (1) ultralow-angle (<1◦) face-face contact region,
(2) intermediate uniform probability region, and (3) high-angle
region. Region 2 contains the largest portion of total contacts
and exhibits c(θf -f ) similar to that of random edge-face
constrained contacts [open squares, Fig. 2(b)] rather than
unconstrained contacts [open circles, Fig. 2(b)]. This results
from the abundance of contacts with small θe-f that exhibit
CDFs approaching that of edge-face constrained contacts
[open squares, Fig. 2(a)] rather than unconstrained contacts
[open circles, Fig. 2(a)]. Region 2 possesses approximately
invariant p(θf -f ), resulting in an increased probability for
contacts to form with acute θf -f [Fig. 2(b)] relative to com-
pletely unconstrained random systems [open circles, Fig. 2(b)].
The emergence of region 1 [gray mask, Fig. 2(b)] can be
understood by considering the constrained rotation of an ideal
edge-face contact. During consolidation such a contact will
rotate randomly about its edge through a range of θf -f .
Repulsion between opposing faces at θf -f = 0 will prevent
the contact from rotating further. We observe the evolution of
c(θe-f ) and c(θf -f ) as φ → φJ , qualitatively consistent with
this idealized picture—region 1 of c(θf -f ) emerges only after
c(θe-f ) becomes hyper-random.

Constraint isostaticity and topological distributions.
To classify topologies we fit c(θe-f ) and c(θf -f ) indepen-
dently with a piecewise continuous distribution function
basis cf (θ ) = H (θ − α)[a0 − ∑3

n=1 an(θ − α)n], where an

are fitted coefficients, H is the Heaviside step function, and α

is the fitted CDF discontinuity. All empirical CDFs have been
fitted by minimizing

∫ θi,c, min/2
0 [cf (θi) − c(θi)]2 dθi , where i cor-

responds to the particular alignment angle. With the fitted pa-
rameter a0 the angular alignment cutoffs for topological clas-
sification θcut are determined such that c(θcut) = a0. Edge-face
contacts are classified as those with θe-f < θe-f,cut and θf -f �
θf -f,cut and face-face contacts as those with θf -f < θf -f,cut.

The variation of average contact number 〈Ztotal〉 with
respect to 
φ [Fig. 3(a)] confirms the generally hypostatic
nature of 〈Ztotal〉, consistent with our previous findings
for smaller systems [6]. We determine the average contact
number for face-face 〈Zf -f 〉, edge-face 〈Ze-f 〉, and lower
order contacts 〈Zl〉. The average constraint number 〈Ctotal〉 is

thereby calculated as 〈Ctotal〉 = 3〈Zf -f 〉 + 2〈Ze-f 〉 + 〈Zl〉 [5].
Importantly, 〈Ctotal〉 of each system approaches values near the
isostatic limit [Fig. 3(b)], in contrast with 〈Ztotal〉 [Fig. 3(a)].
Amorphous jammed systems therefore possess contacts that
independently constrain motion. They also possess 〈Zf -f 〉 � 1
[Fig. 3(c)]. We attribute this effect to a twofold rotational
constraint induced on a given particle once a single face-face
contact is formed. Such a rotational constraint appears to
hinder the formation of additional face-face contacts. In
contrast, optimal Bravais lattices of octahedra, dodecahedra,
and icosahedra (that are implicitly jammed) exhibit 14, 12, and
12 contacts per particle [9], respectively, with all such contacts
being face-face. Therefore, such ordered systems exhibit
ultrahyperstatic average constraint numbers of 42, 36, and
36, respectively. Thus, ordered systems differ drastically from
amorphous jammed systems in terms of average constraint
number and face-face contact number.

Note that the low 〈Zf -f 〉 of tetrahedra clearly contrasts
with the value of 2.3 recently reported for tetrahedral dice [5].
The practical importance of this finding is very significant, for
if two to three face-face contacts per particle were present,
as reported by Ref. [5], we expect such systems to readily

FIG. 3. (Color online) Variation of average (a) contact, (b) con-
straint, and (c) face-face contact number with 
φ. Half-filled symbols
represent data for systems of N = 100, while the remainder are for
N = 400. Data points of tetrahedra and octahedra at 
φ = 0.01
and tetrahedra at 
φ = 0.02 exhibited mild vibrational instability
(5.3% unstable modes for tetrahedra at 
φ = 0.01 and less than
1.2% for the others). (d) Face-face clusters with maximal linear
extent formed in stable N = 400 systems nearest φJ of octahedra,
tetrahedra, icosahedra, and dodecahedra (from left to right).
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TABLE III. Distributions of average contact and constraint
numbers for the present work and prior work.

Present worka Various θcut
a,b Expt.c

〈Ztotal〉 11.1 11.1 6.3
〈Zf -f 〉 0.9 5.4 2.3
〈Ze-f 〉 1.5 3.7 1.2
〈Zl〉 8.6 2.0 2.8
〈Ctotal〉 14.5 25.5 12.1

a100 tetrahedra at 
φ = 0.04.
bValues are computed by averaging over results obtained with θcut =
{5,15,25,35,45,55} as in Refs. [5] and [15].
cValues presented in Ref. [5] for tetrahedral dice.

exhibit cluster percolation and radically different structures
and mechanical behavior than those with near unity 〈Zf -f 〉. In
Table III we compare the contact and constraint numbers of
the present work (column 1) with that of Ref. [5] (column 3).
Indeed, all contact numbers are markedly different (except
〈Ze-f 〉) from that of Ref. [5]. We also utilize a topological
classification procedure similar to that in Refs. [5] and [15] by
averaging the contact numbers obtained for various values of
θcut (column 2 in Table III). The resulting constraint number
is twice as large as the isostatic value. Thus, an arbitrary
choice of θcut, as employed in Refs. [5] and [15], can yield
a geometrically infeasible range of contact numbers and
generally nonisostatic 〈Ctotal〉.

We have analyzed the structure of clusters formed by
face-face contacts (Table IV). The topological connectivity of
clusters was considered under periodic boundary conditions.
The average size of clusters S is defined in terms of the
number of particles s in each cluster as S = ∑

s2/
∑

s;
we find that S increases with 〈Zf -f 〉 as the particle shape
is changed. We also find that all clusters in systems of
N = 400 particles do not percolate according to topological
connectivity. Such a requirement for periodic percolating
networks is stricter than the requirement that a cluster spans the
system boundaries [16]. Therefore, we have also considered
the less restrictive percolation requirement that a cluster
spans system boundaries. Clusters in the respective systems
exhibit maximal extent along Cartesian axes lmax smaller than
the length of the finite cubic cell. Clusters with maximal
linear extent exhibit chainlike structures [Fig. 3(d)] with
fractal dimension Dmax � 1 (Table IV). Considering the fractal

TABLE IV. Face-face contact number 〈Zf -f 〉, average cluster
size S, maximal extent along Cartesian axes lmax, and the fractal
dimension of clusters with maximal linear extent Dmax for stable
N = 400 systems nearest φJ .

Octahedra Icosahedra Tetrahedra Dodecahedra

〈Zf -f 〉 0.59 0.77 0.94 1.02
S 1.88 2.45 3.18 4.13
lmax/(Vcell)1/3 0.665 0.795 0.741 0.776
Dmax 1.01 ± 0.10 1.23 ± 0.08 1.37 ± 0.09 1.32 ± 0.14

dimension of ∼2.5 for a percolating cluster at the threshold
in a simple cubic lattice [17], these chains are substantially
of lower dimension and appear to be far from percolation.
The lack of cluster percolation is a direct consequence of
near unity 〈Zf -f 〉 and is a signature of amorphous jammed
systems. These results suggest that face-face cluster formation
is a bond percolation process with respect to 〈Zf -f 〉. Therefore,
we expect that systems of particles with shapes conducive
to ordering (e.g., cubes) or with attractive interactions could
increase 〈Zf -f 〉, forming larger clusters that percolate.

In summary, we have established that the average constraint
number of amorphous jammed systems of Platonic solids
approaches the isostatic limit near the jamming point, and have
linked this condition to their mechanical stability. The structure
and extent of face-face clusters is found to be a consequence of
few face-face contacts in these systems. Our results therefore
suggest that 〈Zf -f 〉 or other integral functions of p(θf -f ) are
suitable order parameters to determine the maximally random
jammed state of faceted particle systems according to the
approach described in Ref. [18]. Future work will focus on
identifying the means by which the face-face contact number
may increase and on studying the critical behavior of such
systems with ensuing face-face contact percolation.
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