213 research outputs found

    Functional Elements in Three-Dimensional Photonic Bandgap Materials

    Get PDF
    Functional elements in three-dimensional photonic bandgap materials have the potential to precisely control the flow of light. In this thesis a variety of different functional defect structures embedded into silicon woodpile photonic crystals are realized using a combination of direct laser writing and silicon double inversion. The optical properties of the fabricated structures are investigated both experimentally and by numerical calculations

    Bidirectional waveguide coupling with plasmonic Fano nanoantennas

    Get PDF
    We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing

    Optical Yagi-Uda nanoantennas

    Get PDF
    Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, non-classical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices

    Using effective medium theories to design tailored nanocomposite materials for optical systems

    Full text link
    Modern optical systems are subject to very restrictive performance, size and cost requirements. Especially in portable systems size often is the most important factor, which necessitates elaborate designs to achieve the desired specifications. However, current designs already operate very close to the physical limits and further progress is difficult to achieve by changing only the complexity of the design. Another way of improving the performance is to tailor the optical properties of materials specifically to the application at hand. A class of novel, customizable materials that enables the tailoring of the optical properties, and promises to overcome many of the intrinsic disadvantages of polymers, are nanocomposites. However, despite considerable past research efforts, these types of materials are largely underutilized in optical systems. To shed light into this issue we, in this paper, discuss how nanocomposites can be modeled using effective medium theories. In the second part, we then investigate the fundamental requirements that have to be fulfilled to make nanocomposites suitable for optical applications, and show that it is indeed possible to fabricate such a material using existing methods. Furthermore, we show how nanocomposites can be used to tailor the refractive index and dispersion properties towards specific applications.Comment: This is a draft manuscript of a paper published in Proc. SPIE (Proceedings Volume 10745, Current Developments in Lens Design and Optical Engineering XIX, Event: SPIE Optical Engineering + Applications, 2018

    Spectral tuning of a three-dimensional photonic-bandgap waveguide signature by silica atomic-layer deposition

    Get PDF
    Recent progress in three-dimensional sub-micron fabrication has rendered the introduction of waveguide structures into optical three-dimensional photonic bandgap materials possible. However, spectral tuning of the waveguide modes has not been demonstrated so far. Here, we use atomic-layer deposition of amorphous silica to tune the spectral position of an air-core defect waveguide in a three-dimensional silicon woodpile photonic crystal by 225 nm in wavelength. The measured spectral positions of the waveguide signature are in very good agreement with numerical calculations.We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Wurttemberg through the DFG-Center for Functional Nanostructures (CFN) within sub- ¨ project A 1.4. The research of G.v.F. is further supported through a DFG Emmy-Noether fel-lowship (DFG-FR 1671/4-3). We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology

    Electro-optical switching by liquid-crystal controlled metasurfaces

    Full text link
    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation.Comment: 6 pages, 3 figure

    Lasing modes in ZnO nanowires coupled to planar metals

    Full text link
    Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates. We show that an aluminum substrate can decrease the lasing threshold for ZnO nanowire lasers while for a silver substrate, the threshold increases compared with a dielectric substrate. Generalizing from these findings, we make predictions describing the interaction between planar metals and semiconductor nanowires, which allow to guide future improvements of highly-integrated laser sources
    • …
    corecore