3 research outputs found

    Analysis of defect-related optical degradation of VCSILs for photonic integrated circuits

    Get PDF
    Laser diodes are of paramount importance for on-chip telecommunications applications, and a wide range of sensing devices that require near-infrared sources. In this work, the devices under test are vertical-cavity silicon-integrated lasers (VCSILs) designed for operation at 845 nm in photonic integrated circuits (PICs). We focus on the analysis of the degradation of the optical performance during aging. To investigate the reliability of the devices, we carried out several stress tests at constant current, ranging from 3.5 mA to 4.5 mA representing a highly accelerated stress condition. We observed two different degradation modes. In the first part of the experiments, the samples exhibited a worsening of the threshold current, but the sub-threshold emission was unaffected by degradation. We associated this behavior to the diffusion of impurities that, from the p-contact, were crossing the upper mirror implying a worsening of the DBR optical absorption. In the second stage of the stress test, the devices showed a higher degradation rate of the threshold current, whose variation was found to be linearly correlated to the worsening of the sub-threshold emission. We related this second degradation mode to the migration of the same impurities degrading the top DBR that, when reaching the active region of the laser, induced an increase in the non-radiative recombination rate. In addition to that, we related the two degradation modes to the change in series resistance, which was ascribed to the resistivity increment of the top DBR first and of oxide aperture afterwards

    Understanding the Optical Degradation of 845 nm Micro-Transfer-Printed VCSILs for Photonic Integrated Circuits

    No full text
    For the first time we investigate the optical degradation of vertical-cavity silicon-integrated lasers VCSILs) designed for operation at 845 nm in photonic integrated circuits (PICs). The study is based on the combined electro-optical characterization of VCSIL, submitted to constant-current stress tests at different current levels. The original results obtained within the manuscript indicate that degradation is related to the diffusion of impurities. Remarkably, depending on the region through which these impurities are migrating, the diffusion process affects device characteristics in different ways. During Phase 1 (Ph1), compensating impurities originating from the metal-semiconductor contact cross the top DBR, thus degrading mirror reflectivity, which is rarely observed in the literature, and leading to an increase in the threshold current of the device. As the impurities start reaching the active region we observe the onset of Phase 2 (Ph2), during which both threshold current and sub-threshold slope worsen, due to the increase of the Shockley-Read-Hall recombination rate. This phase is also characterized by a measurable increase in series resistance, which is ascribed to a change in the resistance of the oxide aperture. The identification of the root cause of physical degradation represents a fundamental step for future lifetime improvement of these novel optical sources, which are set to replace conventional solid-state sources in the 0.85ÎĽm0.85 \mu \text{m} communication window
    corecore