75 research outputs found

    Investigations of Diabetic Bone Disease:Literature, Registry, and Clinical Studies

    Get PDF

    Editorial:Diabetes and bone - from cell to human

    Get PDF

    Skeletal Fragility in Type 2 Diabetes Mellitus

    Get PDF
    Type 2 diabetes (T2D) is associated with an increased risk of fracture, which has been reported in several epidemiological studies. However, bone mineral density in T2D is increased and underestimates the fracture risk. Common risk factors for fracture do not fully explain the increased fracture risk observed in patients with T2D. We propose that the pathogenesis of increased fracture risk in T2D is due to low bone turnover caused by osteocyte dysfunction resulting in bone microcracks and fractures. Increased levels of sclerostin may mediate the low bone turnover and may be a novel marker of increased fracture risk, although further research is needed. An impaired incretin response in T2D may also affect bone turnover. Accumulation of advanced glycosylation endproducts may also impair bone strength. Concerning antidiabetic medication, the glitazones are detrimental to bone health and associated with increased fracture risk, and the sulphonylureas may increase fracture risk by causing hypoglycemia. So far, the results on the effect of other antidiabetics are ambiguous. No specific guideline for the management of bone disease in T2D is available and current evidence on the effects of antiosteoporotic medication in T2D is sparse. The aim of this review is to collate current evidence of the pathogenesis, detection and treatment of diabetic bone disease

    Alendronate Use and Risk of Type 2 Diabetes:A Nationwide Danish Nested Case-Control Study

    Get PDF
    OBJECTIVE: A link has been proposed between glucose homeostasis and bone metabolism. Bisphosphonates are first-line treatment of osteoporosis, and we aimed to investigate whether the risk of developing type 2 diabetes was associated with prior use of alendronate. RESEARCH DESIGN AND METHODS: We conducted a population-based nested case-control study through access to all discharge diagnoses (ICD-10 system) from the National Danish Patient Registry along with all redeemed drug prescriptions (ATC classification system) from the Health Service Prescription Registry. All cases with a diagnosis of type 2 diabetes between 2008 and 2018 were matched on sex and age with 3 randomly selected controls by incidence-density sampling. Exposure was defined as ever use of alendronate and further grouped as effective and compliant use. ORs were calculated by conditional logistic regression analysis with adjustment for several confounders and test for trend for dose-response relationship. RESULTS: We included 163,588 patients with type 2 diabetes and 490,764 matched control subjects with a mean age of 67 years and 55% male subjects. The odds of developing type 2 diabetes were lower among ever users of alendronate (multiple adjusted OR: 0.64 [95% CI 0.62-0.66]). A test for trend suggested a dose-response relationship between longer effective use of alendronate and lower risk of type 2 diabetes. CONCLUSION: These results suggest a possible protective effect of alendronate in a dose-dependent manner against development of type 2 diabetes

    The Efficacy of Alendronate Versus Denosumab on Major Osteoporotic Fracture Risk in Elderly Patients With Diabetes Mellitus:A Danish Retrospective Cohort Study

    Get PDF
    OBJECTIVE: Patients with diabetes mellitus have an increased risk of fractures; however, the underlying mechanism is largely unknown. We aimed to investigate whether the risk of major osteoporotic fractures in diabetes patients differs between subjects initiated with alendronate and denosumab, respectively. METHODS AND RESEARCH DESIGN: We conducted a retrospective nationwide cohort study through access to all discharge diagnoses (ICD-10 system) from the National Danish Patient Registry along with all redeemed drug prescriptions (ATC classification system) from the Health Service Prescription Registry. We identified all subjects with a diabetes diagnosis between 2000 and 2018 and collected data on the first new prescription of anti-osteoporotic treatment between 2011 and 2018. Exposure was defined as either alendronate or denosumab treatment initiated after diabetes diagnosis. Outcome information was collected by identification of all major osteoporotic fracture (MOF) diagnoses, i.e., hip, spine, forearm, and humerus, from exposure until 2018 or censoring by emigration or death. The risk of fracture was calculated as hazard ratios (HR) using multiply adjusted Cox proportional models with death as a competing risk. RESULTS: We included 8,745 subjects initiated with either alendronate (n = 8,255) or denosumab (n = 490). The cohort consisted of subjects with a mean age of 73.62 (SD ± 9.27) years, primarily females (69%) and suffering mainly from type 2 diabetes (98.22%) with a median diabetes duration at baseline of 5.45 years (IQR 2.41–9.19). Those in the denosumab group were older (mean 75.60 [SD ± 9.72] versus 73.51 [SD ± 9.23] years), had a higher proportion of women (81% versus 68%, RR 1.18 [95% CI 1.13–1.24], and were more comorbid (mean CCI 2.68 [95% CI 2.47–2.88] versus 1.98 [95% CI 1.93–2.02]) compared to alendronate initiators. In addition, denosumab users had a higher prevalence of previous fractures (64% versus 46%, RR 1.38 [95% CI 1.28–1.48]). The adjusted HR for any MOF after treatment initiation with denosumab was 0.89 (95% CI 0.78–1.02) compared to initiation with alendronate. CONCLUSION: The risk of incident MOF among subjects with diabetes was similar between those initially treated with alendronate and denosumab. These findings indicate that the two treatment strategies are equally effective in preventing osteoporotic fractures in subjects with diabetes

    SGLT2 inhibitor treatment is not associated with an increased risk of osteoporotic fractures when compared to GLP-1 receptor agonists:A nationwide cohort study

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased fracture risk. It is debated whether sodium-glucose cotransporter 2 (SGLT2) inhibitors influence fracture risk in T2D. We aimed to investigate the risk of major osteoporotic fractures (MOF) with SGLT2 inhibitors compared to glucagon-like peptide 1 (GLP-1) receptor agonists when used as add-on therapies to metformin. METHODS: We conducted a population-based cohort study using Danish national health registries. Diagnoses were obtained from discharge diagnosis codes (ICD-10 and ICD-8-system) from the Danish National Patient Registry, and all redeemed drug prescriptions were obtained from the Danish National Prescription Registry (ATC classification system). Subjects treated with metformin in combination with either SGLT2 inhibitors or GLP-1 receptor agonists were identified and enrolled from 2012 to 2018. Subjects were then propensity-score matched 1:1 based on age, sex, and index date. Major osteoporotic fractures (MOF) were defined as hip, vertebral, humerus, or forearm fractures. A Cox proportional hazards model was utilized to estimate hazard rate ratios (HR) for MOF, and survival curves were plotted using the Kaplan-Meier estimator. RESULTS: In total, 27,543 individuals treated with either combination were identified and included. After matching, 18,390 individuals were included in the main analysis (9,190 in each group). Median follow-up times were 355 [interquartile range (IQR) 126-780] and 372 [IQR 136-766] days in the SGLT2 inhibitor and GLP-1 receptor agonist group, respectively. We found a crude HR of 0.77 [95% CI 0.56-1.04] for MOF with SGLT2 inhibitors compared to GLP-1 receptor agonists. In the fully adjusted model, we obtained an unaltered HR of 0.77 [95% CI 0.56-1.05]. Results were similar across subgroup- and sensitivity analyses. CONCLUSION: These results suggest that SGLT2 inhibitors have no effect on fracture risk when compared to GLP-1 receptor agonists. This is in line with results from previous studies

    The Effects of 12-Weeks Whey Protein Supplements on Markers of Bone Turnover in Adults With Abdominal Obesity – A <i style="">Post Hoc</i> Analysis

    Get PDF
    BACKGROUND: While osteoporosis is characterized by skeletal fragility due to increased bone turnover and low bone mineral density (BMD), subjects with abdominal obesity and type-2 diabetes have increased risk of bone fractures despite low bone turnover and increased BMD. Diets with increased protein content are reported to increase bone turnover in healthy adults and may be a point of interest in preserving bone strength in subjects with abdominal obesity and/or type-2 diabetes. METHODS: We examined the effect of 12-weeks dietary intervention on bone turnover in 64 adults with abdominal obesity using data from the MERITS trial. The trial was a randomized, controlled, double blinded study in which participants were allocated to receive either 60 g/d of whey protein hydrolysate or maltodextrin in combination with either high (30 g/d) or low dietary fiber intake (10 g/d). Primarily, we assessed changes in plasma markers of bone turnover Procollagen type 1 N-terminal propeptide (p1NP), C-terminal telopeptide type-1 collagen (CTX), and parathyroid hormone (PTH) within the four intervention groups. In addition, we measured u-calcium and u-carbamide excretion, 25(OH)D, and BMD by whole body DXA scans. Finally, we compared changes in insulin resistance (Homeostasis-model assessment of insulin resistance, HOMA-IR) with changes in bone turnover markers. The trial was registered at www.clinicaltrials.gov as NCT02931630. RESULTS: Sixty-four subjects were included in the study. We did not find any effect of twelve weeks of high protein or high fiber intake on plasma levels of P1NP or CTX. There was a nonsignificant positive association between protein intake and PTH levels (p=0.06). U-calcium and u-carbamide increased in both protein groups. There was a positive association between change in HOMA-IR and PTH (p=0.042), while changes in P1NP and CTX did not associate to changes in HOMA-IR. CONCLUSION: Twelve weeks of increased whey protein intake in subjects with abdominal obesity did not affect markers of bone turnover significantly, although tended to increase PTH levels. Dietary fiber intake did not affect bone turnover. We report a positive association between change in HOMA-IR and PTH supporting a hypothesis of insulin resistance as a potential key factor in the expanding field of bone fragility in T2D subjects

    The risk of major osteoporotic fractures with GLP-1 receptor agonists when compared to DPP-4 inhibitors:A Danish nationwide cohort study

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased fracture risk. There is little evidence for the effects of glucagon-like peptide 1 receptor agonists (GLP-1RA) on fracture risk in T2D. We aimed to investigate the risk of major osteoporotic fractures (MOF) for treatment with GLP-1RA compared to dipeptidyl peptidase 4 inhibitors (DPP-4i) as add-on therapies to metformin. METHODS: We conducted a population-based cohort study using Danish national health registries. Diagnoses were obtained from discharge diagnosis codes (ICD-10 and ICD-8-system) from the Danish National Patient Registry, and all redeemed drug prescriptions were obtained from the Danish National Prescription Registry (ATC classification system). Subjects treated with metformin in combination with either GLP-1RA or DPP-4i were enrolled from 2007 to 2018. Subjects were propensity-score matched 1:1 based on age, sex, and index date. MOF were defined as hip, vertebral, humerus, or forearm fractures. A Cox proportional hazards model was utilized to estimate hazard rate ratios (HR) for MOF, and survival curves were plotted using the Kaplan-Meier estimator. In addition, Aalen’s Additive Hazards model was applied to examine additive rather than relative hazard effects while allowing time-varying effects. RESULTS: In total, 42,816 individuals treated with either combination were identified and included. After matching, 32,266 individuals were included in the main analysis (16,133 in each group). Median follow-up times were 642 days and 529 days in the GLP-1RA and DPP-4i group, respectively. We found a crude HR of 0.89 [0.76–1.05] for MOF with GLP-1RA compared to DPP-4i. In the fully adjusted model, we obtained an unaltered HR of 0.86 [0.73–1.03]. For the case of hip fracture, we found a crude HR of 0.68 [0.49–0.96] and a similar adjusted HR. Fracture risk was lower in the GLP-1RA group when examining higher daily doses of the medications, when allowing follow-up to continue after medication change, and when examining hip fractures, specifically. Additional subgroup- and sensitivity analyses yielded results similar to the main analysis. CONCLUSION: In our primary analysis, we did not observe a significantly different risk of MOF between treatment with GLP-1RA and DPP-4i. We conclude that GLP-1RA are safe in terms of fracture
    • …
    corecore