20 research outputs found

    Quantum correlation of light scattered by disordered media

    Get PDF
    We study theoretically how multiple scattering of light in a disordered medium can spontaneously generate quantum correlations. In particular we focus on the case where the input state is Gaussian and characterize the correlations between two arbitrary output modes. As there is not a single all-inclusive measure of correlation, we characterise the output correlations with three measures: intensity fluctuations, entanglement, and quantum discord. We found that, while a single mode coherent state input can not produce quantum correlations, any other Gaussian input will produce them in one form or another. This includes input states that are usually regarded as more classical than coherent ones, such as thermal states, which will produce a non zero quantum discord

    Quantum correlation of light scattered by disordered media

    Get PDF
    We study theoretically how multiple scattering of light in a disordered medium can spontaneously generate quantum correlations. In particular we focus on the case where the input state is Gaussian and characterize the correlations between two arbitrary output modes. As there is not a single all-inclusive measure of correlation, we characterise the output correlations with three measures: intensity fluctuations, entanglement, and quantum discord. We find that, while a coherent input state can not produce quantum correlations, any other Gaussian input will produce them in one form or another. This includes input states that are usually regarded as more classical than coherent ones, such as thermal states, which will produce a non-zero quantum discordWe are grateful to M. Paternostro, D. Browne, and M. Williamson for insightful discussions. JA acknowledges support by EPSRC (EP/M009165/1). JB acknowledges support from the Leverhulme Trust’s Philip Leverhulme Prize. IS acknowledges support from EPSRC (EP/L015331/1) through the Centre of Doctoral Training in Metamaterials (XM2)

    Optical Nonlinear Correlations in Disordered Media

    Get PDF
    Imaging through scattering and random media is an outstanding problem that to date has been tackled by either measuring the medium transmission matrix or exploiting linear correlations in the transmitted speckle patterns. However, transmission matrix techniques require interferometric stability and linear correlations such as the memory effect, can be exploited only in thin scattering media. Here we uncover an unexpected nonlinear correlation in randomly scattered fields that connects different realisations of the scattering medium and exists in the absence of the speckle memory effect. Besides the novelty of the nonlinear relationship itself, these results provide a route to imaging through dynamic and thick scattering media with applications for deep-tissue imaging or imaging through smoke or fog

    Blind Ghost Imaging

    Full text link
    Ghost imaging is an unconventional optical imaging technique that reconstructs the shape of an object combining the measurement of two signals: one that interacted with the object, but without any spatial information, the other containing spatial information, but that never interacted with the object. Ghost imaging is a very flexible technique, that has been generalized to the single-photon regime, to the time domain, to infrared and terahertz frequencies, and many more conditions. Here we demonstrate that ghost imaging can be performed without ever knowing the patterns illuminating the object, but using patterns correlated with them, doesn't matter how weakly. As an experimental proof we exploit the recently discovered correlation between the reflected and transmitted light from a scattering layer, and reconstruct the image of an object hidden behind a scattering layer using only the reflected light, which never interacts with the object. This method opens new perspectives for non-invasive imaging behind or within turbid media.Comment: 5 pages, 4 figure

    Statistical Dependencies Beyond Linear Correlations in Light Scattered by Disordered Media

    Full text link
    The purpose of this dataset is to demonstrate the existence of a nonlinear correlation in randomly scattered fields that connects different realisations of the scattering medium and to show an example of image reconstruction through a scattering medium in the absence of any known linear correlations in particular speckle memory effect. For more details see Readme.pd

    3D imaging from multipath temporal echoes

    Get PDF
    Echo-location is a broad approach to imaging and sensing that includes both man-made RADAR, LIDAR, SONAR and also animal navigation. However, full 3D information based on echo-location requires some form of scanning of the scene in order to provide the spatial location of the echo origin-points. Without this spatial information, imaging objects in 3D is a very challenging task as the inverse retrieval problem is strongly ill-posed. Here, we show that the temporal information encoded in the return echoes that are reflected multiple times within a scene is sufficient to faithfully render an image in 3D. Numerical modelling and an information theoretic perspective prove the concept and provide insight into the role of the multipath information. We experimentally demonstrate the concept by using both radio-frequency and acoustic waves for imaging individuals moving in a closed environment.Comment: Main document: 5 pages, 3 figures. Supplementary document: 8 pages, 7 figures. Supplementary videos can be accessed in the following link: https://www.youtube.com/playlist?list=PLqMUzW5Nvp3RhHK1O4k34NVIbfeAKiVb

    Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera

    Get PDF
    Spatial correlations between two photons are the key resource in realising many quantum imaging schemes. Measurement of the bi-photon correlation map is typically performed using single-point scanning detectors or single-photon cameras based on charged coupled device (CCD) technology. However, both approaches are limited in speed due to the slow scanning and the low frame rate of CCD-based cameras, resulting in data acquisition times on the order of many hours. Here, we employ a high frame rate, single-photon avalanche diode (SPAD) camera, to measure the spatial joint probability distribution of a bi-photon state produced by spontaneous parametric down-conversion, with statistics taken over 107 frames. Through violation of an Einstein–Podolsky–Rosen criterion by 227 sigmas, we confirm the presence of spatial entanglement between our photon pairs. Furthermore, we certify, in just 140 s, an entanglement dimensionality of 48. Our work demonstrates the potential of SPAD cameras in the rapid characterisation of photonic entanglement, leading the way towards real-time quantum imaging and quantum information processing

    Spatial images from temporal data

    Get PDF
    Traditional paradigms for imaging rely on the use of a spatial structure, either in the detector (pixels arrays) or in the illumination (patterned light). Removal of the spatial structure in the detector or illumination, i.e., imaging with just a single-point sensor, would require solving a very strongly ill-posed inverse retrieval problem that to date has not been solved. Here, we demonstrate a data-driven approach in which full 3D information is obtained with just a single-point, single-photon avalanche diode that records the arrival time of photons reflected from a scene that is illuminated with short pulses of light. Imaging with single-point time-of-flight (temporal) data opens new routes in terms of speed, size, and functionality. As an example, we show how the training based on an optical time-of-flight camera enables a compact radio-frequency impulse radio detection and ranging transceiver to provide 3D images.Comment: This is the final version as published in Optica Vol. 7, Issue 8, pp. 900-905 (2020
    corecore