6,037 research outputs found

    Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements

    Get PDF
    Expressions which give the effective color temperatures and corresponding emission measures for solar X-ray events observed with instruments onboard any of the GOES satellites are developed. Theoretical spectra were used to simulate the solar X-ray input at a variety of plasma temperatures. These spectra were folded through the wavelength dependent transfer functions for the two GOES detectors. The resulting detector responses and their ratio as a function of plasma temperature were then fit with simple analytic curves. Over the entire range between 5 and 30 million degrees, these fits reproduce the calculated color temperatures within 2% and the calculated emission measures within 5%. With the theoretical spectra, similar expressions for any pair of broadband X-ray detectors whose sensitivities are limited to wavelengths between 0.2 and 100 A are calculable

    A balloon-borne high-resolution spectrometer for observations of gamma-ray emission from solar flares

    Get PDF
    The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications

    TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    Full text link
    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.Comment: Presentation at SPIE 2004, Glasgow, Scotland (UK

    A gradient index metamaterial

    Full text link
    Metamaterials--artificially structured materials with tailored electromagnetic response--can be designed to have properties difficult to achieve with existing materials. Here we present a structured metamaterial, based on conducting split ring resonators (SRRs), which has an effective index-of-refraction with a constant spatial gradient. We experimentally confirm the gradient by measuring the deflection of a microwave beam by a planar slab of the composite metamaterial over a broad range of frequencies. The gradient index metamaterial represents an alternative approach to the development of gradient index lenses and similar optics that may be advantageous, especially at higher frequencies. In particular, the gradient index material we propose may be suited for terahertz applications, where the magnetic resonant response of SRRs has recently been demonstrated

    Energetics and dynamics of simple impulsive solar flares

    Get PDF
    Flare energetics and dynamics were studied using observations of simple impulsive spike bursts. A large, homogeneous set of events was selected to enable the most definite tests possible of competing flare models, in the absence of spatially resolved observations. The emission mechanisms and specific flare models that were considered in this investigation are described, and the derivations of the parameters that were tested are presented. Results of the correlation analysis between soft and hard X-ray energetics are also presented. The ion conduction front model and tests of that model with the well-observed spike bursts are described. Finally, conclusions drawn from this investigation and suggestions for future studies are discussed

    Conceptual design study for an advanced cab and visual system, volume 2

    Get PDF
    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation

    Interpenetration as a Mechanism for Liquid-Liquid Phase Transitions

    Full text link
    We study simple lattice systems to demonstrate the influence of interpenetrating bond networks on phase behavior. We promote interpenetration by using a Hamiltonian with a weakly repulsive interaction with nearest neighbors and an attractive interaction with second-nearest neighbors. In this way, bond networks will form between second-nearest neighbors, allowing for two (locally) distinct networks to form. We obtain the phase behavior from analytic solution in the mean-field approximation and exact solution on the Bethe lattice. We compare these results with exact numerical results for the phase behavior from grand canonical Monte Carlo simulations on square, cubic, and tetrahedral lattices. All results show that these simple systems exhibit rich phase diagrams with two fluid-fluid critical points and three thermodynamically distinct phases. We also consider including third-nearest-neighbor interactions, which give rise to a phase diagram with four critical points and five thermodynamically distinct phases. Thus the interpenetration mechanism provides a simple route to generate multiple liquid phases in single-component systems, such as hypothesized in water and observed in several model and experimental systems. Additionally, interpenetration of many such networks appears plausible in a recently considered material made from nanoparticles functionalized by single strands of DNA.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Phylogenetic Relationships in Tribe Cariceae (Cyperaceae) Based on Nested Analyses of Four Molecular Data Sets

    Get PDF
    Phylogenetic reconstruction for Carex and relatives in tribe Cariceae is complicated by species richness and nearly cosmopolitan distribution. In this investigation, our main objective was to estimate evolutionary relationships in tribe Cariceae using DNA sequence data from two spacer regions in nuclear ribosomal genes (ITS and ETS-1f) combined with noncoding chloroplast DNA (trnL intron, trnL–trnF intergenic spacer, and trnE–trnD intergenic spacers). Parsimony analyses of separate and combined data and Bayesian analysis of the combined data matrix revealed strong support for monophyly of tribe Cariceae and for monophyly of two major lineages, one comprising principally Carex subgen. Carex and Vigneastra, and the other representing subgen. Vignea. A third clade with representatives from Kobresia and Uncinia, along with Cymophyllus fraserianus, Carex curvula, and several unispicate Carex received weak-to-moderate support. A small clade comprising Schoenoxiphium and two unispicate carices was placed as sister to the clades comprising multispicate Carex species in the parsimony analysis, but sister to the clade of Kobresia, Uncinia, and unispicate Carex in the Bayesian analysis. Two large widespread groups within subgen. Carex, sect. Hymenochlaenae and sect. Physocarpae s.l. (‘‘bladder sedges ), were highly polyphyletic, while ten clades that grouped species from two or more sections were each strongly supported as monophyletic. Within subgen. Vignea, three sections were strongly supported as monophyletic while sects. Phaestoglochin and Vulpinae were polyphyletic. Adding the variable ETS-1f region improved resolution and bootstrap support values over previous studies, but many of the characters supporting major branches came from the trnL region
    • …
    corecore