8 research outputs found

    High-resolution Imaging of the Human Cochlea through the Round Window by means of Optical Coherence Tomography

    No full text
    The human cochlea is deeply embedded in the temporal bone and surrounded by a thick otic capsule, rendering its internal structure inaccessible for direct visualization. Clinical imaging techniques fall short of their resolution for imaging of the intracochlear structures with sufficient detail. As a result, there is a lack of knowledge concerning best practice for intracochlear therapy placement, such as cochlear implantation. In the past decades, optical coherence tomography (OCT) has proven valuable for non-invasive, high-resolution, cross-sectional imaging of tissue microstructure in various fields of medicine, including ophthalmology, cardiology and dermatology. There is an upcoming interest for OCT imaging of the cochlea, which so far was mostly carried out in small animals. In this temporal bone study, we focused on high-resolution imaging of the human cochlea. The cochlea was approached through mastoidectomy and posterior tympanotomy, both standard surgical procedures. A commercially available spectral-domain OCT imaging system was used to obtain high-resolution images of the cochlear hook region through the intact round window membrane in four cadaveric human temporal bones. We discuss the qualitative and quantitative characteristics of intracochlear structures on OCT images and their importance for cochlear implant surgery.status: publishe

    Optical Coherence Tomography Imaging of the Cochlea

    No full text
    Presentationstatus: publishe

    Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region

    No full text
    Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely challenging. Current imaging techniques used in clinical practice, such as MRI and CT, fall short in their resolution to visualize important intracochlear landmarks, and histological analysis of the cochlea cannot be performed on living patients without compromising their hearing. Recently, optical coherence tomography (OCT) has been shown to be a promising tool for nondestructive micrometer resolution imaging of the mammalian inner ear. Various studies performed on human cadaveric tissue and living animals demonstrated the ability of OCT to visualize important cochlear microstructures (scalae, organ of Corti, spiral ligament, and osseous spiral lamina) at micrometer resolution. However, the interpretation of human intracochlear OCT images is non-trivial for researchers and clinicians who are not yet familiar with this novel technology. In this study, we present an atlas of intracochlear OCT images, which were acquired in a series of 7 fresh and 10 fresh-frozen human cadaveric cochleae through the round window membrane and describe the qualitative characteristics of visualized intracochlear structures. Likewise, we describe several intracochlear abnormalities, which could be detected with OCT and are relevant for clinical practice

    An optically-guided cochlear implant sheath for real-time monitoring of electrode insertion into the human cochlea

    No full text
    In cochlear implant surgery, insertion of perimodiolar electrode arrays into the scala tympani can be complicated by trauma or even accidental translocation of the electrode array within the cochlea. In patients with partial hearing loss, cochlear trauma can not only negatively affect implant performance, but also reduce residual hearing function. These events have been related to suboptimal positioning of the cochlear implant electrode array with respect to critical cochlear walls of the scala tympani (modiolar wall, osseous spiral lamina and basilar membrane). Currently, the position of the electrode array in relation to these walls cannot be assessed during the insertion and the surgeon depends on tactile feedback, which is unreliable and often comes too late. This study presents an image-guided cochlear implant device with an integrated, fiber-optic imaging probe that provides real-time feedback using optical coherence tomography during insertion into the human cochlea. This novel device enables the surgeon to accurately detect and identify the cochlear walls ahead and to adjust the insertion trajectory, avoiding collision and trauma. The functionality of this prototype has been demonstrated in a series of insertion experiments, conducted by experienced cochlear implant surgeons on fresh-frozen human cadaveric cochleae
    corecore