94 research outputs found
Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.langmuir.5b01075A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr < θ < θa, which are different from the unique equilibrium contact angle θ ≠θe, correspond to the state of slow “microscopic” advancing or receding motion of the liquid if θe < θ < θa or θr < θ < θe, respectively. This “microscopic” motion almost abruptly becomes fast “macroscopic” advancing or receding motion after the contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid–solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation
Honorary note: Clayton J. Radke
This paper is in closed access
Concentration of inorganic salts in the permeate during nano- or ultrafiltration promoted by water-soluble polyelectrolytes in the feed solution
Nano- or ultrafiltration of inorganic salts in the presence of a polyelectrolyte in the feed solution is investigated in this work. The membranes are completely impermeable to the polyelectrolyte. At low concentrations of polyelectrolyte, a gel layer on the membrane surface is not formed. At such polyelectrolyte concentrations, the concentration of inorganic salt in the permeate stream can be higher than that in the feed solution. This salt concentration effect is the reverse of what is obtained with conventional membrane processes, where the permeate salt concentration is lower than, or equal to, the salt concentration in the feed solution. It is shown that, in the nano- or ultrafiltration of inorganic salts in the presence of a polyelectrolyte, the ratio of the salt concentration in the permeate to that in the feed is improved when the initial salt concentration in the feed solution is low. Concentration polarization has a negative impact on this concentrating effect. A theory that elucidates the observed phenomenon is presented, together with experimental data for potassium chloride solutions and N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer filtered on an ultrafilter with a pore size of 5 nm
Concentration of potassium cations in the permeate solution in the presence of N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer using dead-end nano-or ultrafiltration
The investigation is based on the nano-or ultrafiltration of inorganic salts in the presence of a polyelectrolyte in the feed solution. Cellulose acetate membranes are selected with a pore size of 10–20 nm. The membranes are imaged using atomic force microscope. The membrane is completely impermeable to the polyelectrolyte. Polyelectrolyte concentrations are taken in the range of 0.5–1 g/l to avoid a gel layer formation over the membrane. It is discovered that, at such low polyelectrolyte concentration, inorganic salt concentration in the permeate is higher than in the feed solution. This process therefore deviates from conventional membrane separation processes, where the permeate salt concentration is lower or equal to the salt concentration in the feed solution. It is shown that during the nano-or ultrafiltration of inorganic salts in the presence of polyelectrolyte, the ratio of salt concentration in the permeate to feed increases when the initial salt concentration in the feed solution is low. Concentration polarization has a negative impact on this concentrating effect. In the case of this investigation, KCl, KNO3, K2SO4 are taken as inorganic salts, N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer is selected as a polyelectrolyte
Smart and green interfaces: From single bubbles/drops to industrial environmental and biomedical applications
Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and drop interfaces are in many of these smart technologies the fundamental entities and help develop smart products of the everyday life. Significant improvements of these processes and products can be achieved by implementing and manipulating specific properties of these interfaces in a simple and smart way, in order to accomplish specific tasks. The severe environmental issues require in addition attributing eco-friendly features to these interfaces, by incorporating innovative, or, sometimes, recycle materials and conceiving new production processes which minimize the use of natural resources and energy. Such concept can be extended to include important societal challenges related to support a sustainable development and a healthy population.
The achievement of such ambitious targets requires the technology research to be supported by a robust development of theoretical and experimental tools, needed to understand in more details the behavior of complex interfaces. A wide but not exhaustive review of recent work concerned with green and smart interfaces is presented, addressing different scientific and technological fields. The presented approaches reveal a huge potential in relation to various technological fields, such as nanotechnologies, biotechnologies, medical diagnostics, and new or improved materials. (C) 2014 Elsevier B.V. All rights reserved
- …