18 research outputs found

    Effects of pyric herbivory on prairie-chicken (\u3ci\u3eTympanuchus\u3c/i\u3e spp) habitat

    Get PDF
    The reduction and simplification of grasslands has led to the decline of numerous species of grassland fauna, particularly grassland-obligate birds. Prairie-chickens (Tympanuchus spp.) are an example of obligate grassland birds that have declined throughout most of their distribution and are species of conservation concern. Pyric herbivory has been suggested as a land management strategy for enhancing prairie-chicken habitat and stabilizing declining population trends. We assessed differences in vegetation structure created by pyric herbivory compared to fire-only treatments to determine whether pyric herbivory increased habitat heterogeneity for prairie-chickens, spatially or temporally. Our study was performed at four sites in the southern Great Plains, all within the current or historic distribution of either lesser (T. pallidicinctus), greater (T. cupido), or Attwater’s (T. cupido attwateri) prairie-chick-ens. Key vegetation characteristics of grass cover and vegetation height in pyric herbivory and fire-only treatments were within the recommended range of values for prairie-chickens during their distinct life history stages. However, patches managed via pyric herbivory pro-vided approximately 5% more forb cover than fire-only treatments for almost 30 months post-fire. Additionally, pyric herbivory extended the length of time bare ground was present after fires. Pyric herbivory also reduced vegetation height and biomass, with mean vegetation height in pyric herbivory treatments lagging behind fire-only treatments by approximately 15 months. Canopy cover in fire-only treatments exceeded levels recommended for prairie-chicken young within 12 months post-fire. However, canopy cover in pyric herbivory treatments never exceeded the maximum recommended levels. Overall, it appears that pyric herbivory improves vegetation characteristics reported as critical to prairie-chicken reproduction. Based on our results, we suggest pyric herbivory as a viable management technique to promote prairie-chicken habitat in the southern Great Plains, while still accommodating livestock production

    Effects of Pyric Herbivory on Prairie-Chicken (Tympanuchus spp) Habitat

    Get PDF
    The reduction and simplification of grasslands has led to the decline of numerous species of grassland fauna, particularly grassland-obligate birds. Prairie-chickens (Tympanuchus spp.) are an example of obligate grassland birds that have declined throughout most of their distribution and are species of conservation concern. Pyric herbivory has been suggested as a land management strategy for enhancing prairie-chicken habitat and stabilizing declining population trends. We assessed differences in vegetation structure created by pyric herbivory compared to fire-only treatments to determine whether pyric herbivory increased habitat heterogeneity for prairie-chickens, spatially or temporally. Our study was performed at four sites in the southern Great Plains, all within the current or historic distribution of either lesser (T. pallidicinctus), greater (T. cupido), or Attwater’s (T. cupido attwateri) prairie-chickens. Key vegetation characteristics of grass cover and vegetation height in pyric herbivory and fire-only treatments were within the recommended range of values for prairie-chickens during their distinct life history stages. However, patches managed via pyric herbivory provided approximately 5% more forb cover than fire-only treatments for almost 30 months post-fire. Additionally, pyric herbivory extended the length of time bare ground was present after fires. Pyric herbivory also reduced vegetation height and biomass, with mean vegetation height in pyric herbivory treatments lagging behind fire-only treatments by approximately 15 months. Canopy cover in fire-only treatments exceeded levels recommended for prairie-chicken young within 12 months post-fire. However, canopy cover in pyric herbivory treatments never exceeded the maximum recommended levels. Overall, it appears that pyric herbivory improves vegetation characteristics reported as critical to prairie-chicken reproduction. Based on our results, we suggest pyric herbivory as a viable management technique to promote prairie-chicken habitat in the southern Great Plains, while still accommodating livestock production

    Recoupling fire and grazing reduces wildland fuel loads on rangelands

    Get PDF
    Fire suppression and exclusion, the historically dominant paradigm of fire management, has resulted in major modifications of fire-dependent ecosystems worldwide. These changes are partially credited with a recent increase in wildfire number and extent, as well as more extreme fire behavior. Fire and herbivory historically interacted, and research has shown that the interaction creates a unique mosaic of vegetation heterogeneity that each disturbance alone does not create. Because fire and grazing have largely been decoupled in modern times, the degree to which the interaction affects fuels and fire regimes has not yet been quantified. We evaluated effects of fire-only and pyric herbivory on rangeland fuels and fire behavior simulated using BehavePlus at four sites across the southern Great Plains.We predicted patches managed via pyric herbivory would maintain lower fuel loads, and less intense simulated fire behavior than fire alone. We found that time since fire was a significant predictor of fuel loads and simulated fire behavior characteristics at all sites. Fuel loads and simulated fire behavior characteristics (flame length and rate of spread) increased with increasing time since fire in all simulated weather scenarios. Pyric herbivory mediated fuel accumulation at all sites. Mean fuel loads in fire-only treatments exceeded 5000 kg/ha within 24 months, but pyric herbivory treatments remained below 5000 kg/ha for approximately 36 months. Simulated flame lengths in fire-only treatments were consistently higher (up to 3 9 ) than in pyric herbivory treatments. Similarly, fire spread rates were higher in fire-only than in pyric herbivory treatments in all simulated weather conditions. Although all sites had potential to burn in the most extreme weather conditions, pyric herbivory reduced fuel accumulations, flame lengths, and rates of spread across all weather patterns simulated. These reductions extended the amount of time standard wildland firefighting techniques remain effective. Therefore, incorporating pyric herbivory into fuel management practices, in areas of high herbaceous productivity, increases the effectiveness of fuel treatments

    Recoupling Fire and Grazing Reduces Wildland Fuel Loads on Rangelands

    Get PDF
    Fire suppression and exclusion, the historically dominant paradigm of fire management, has resulted in major modifications of fire-dependent ecosystems worldwide. These changes are partially credited with a recent increase in wildfire number and extent, as well as more extreme fire behavior. Fire and herbivory historically interacted, and research has shown that the interaction creates a unique mosaic of vegetation heterogeneity that each disturbance alone does not create. Because fire and grazing have largely been decoupled in modern times, the degree to which the interaction affects fuels and fire regimes has not yet been quantified. We evaluated effects of fire-only and pyric herbivory on rangeland fuels and fire behavior simulated using BehavePlus at four sites across the southern Great Plains. We predicted patches managed via pyric herbivory would maintain lower fuel loads, and less intense simulated fire behavior than fire alone. We found that time since fire was a significant predictor of fuel loads and simulated fire behavior characteristics at all sites. Fuel loads and simulated fire behavior characteristics (flame length and rate of spread) increased with increasing time since fire in all simulated weather scenarios. Pyric herbivory mediated fuel accumulation at all sites. Mean fuel loads in fire-only treatments exceeded 5000 kg/ha within 24 months, but pyric herbivory treatments remained below 5000 kg/ha for approximately 36 months. Simulated flame lengths in fire-only treatments were consistently higher (up to 3 x ) than in pyric herbivory treatments. Similarly, fire spread rates were higher in fire-only than in pyric herbivory treatments in all simulated weather conditions. Although all sites had potential to burn in the most extreme weather conditions, pyric herbivory reduced fuel accumulations, flame lengths, and rates of spread across all weather patterns simulated. These reductions extended the amount of time standard wildland firefighting techniques remain effective. Therefore, incorporating pyric herbivory into fuel management practices, in areas of high herbaceous productivity, increases the effectiveness of fuel treatments

    \u3ci\u3eProsopis glandulosa\u3c/i\u3e persistence is facilitated by differential protection of buds during low- and high-energy fires

    Get PDF
    Rangelands worldwide have experienced significant shifts from grass-dominated to woody-plant dominated states over the past century. In North America, these shifts are largely driven by overgrazing and landscape-scale fire suppression. Such shifts reduce productivity for livestock, can have broad-scale impacts to biodiversity, and are often difficult to reverse. Restoring grass dominance often involves restoring fire as an ecological process. However, many resprouting woody plants persist following disturbance, including fire, by resprouting from protected buds, rendering fire ineffective for reducing resprouting woody plant density. Recent research has shown that extreme fire (high-energy fires during periods of water stress) may reduce resprouting capacity. This previous research did not examine whether high-energy fires alone would be sufficient to cause mortality. We created an experimental framework for assessing the “buds-protection-resources” hypothesis of resprouting persistence under different fire energies. In July–August 2018 we exposed 48 individuals of a dominant resprouting woody plant in the region, honey mesquite (Prosopis glandulosa), to two levels of fire energy (high and low) and root crown exposure (exposed vs unexposed) and evaluated resprouting capacity. We censused basal and epicormic resprouts for two years following treatment. Water stress was moderate for several months leading up to fires but low in subsequent years. Epicormic and basal buds were somewhat protected from lowand high-energy fire. However, epicormic buds were protected in very few mesquites subjected to high-energy fires. High-energy fires decreased survival, caused loss of apical dominance, and left residual dead stems, which may increase chances of mortality from future fires. Basal resprout numbers were reduced by high-energy fires, which may have additional implications for long-term mesquite survival. While the buds, protection, and resources components of resprouter persistence all played a role in resprouting, high-energy fire decreased mesquite survival and reduced resprouting. This suggests that high-energy fires affect persistence mechanisms to different extents than low-energy fires. In addition, high-energy fires during normal rainfall can have negative impacts on resprouting capacity; water stress is not a necessary precursor to honey mesquite mortality from highenergy fire

    Exotic herbivores and fire energy drive standing herbaceous biomass but do not alter compositional patterns in a semiarid savanna ecosystem

    Get PDF
    Questions: Fire regime alterations are pushing open ecosystems worldwide past tipping points where alternative steady states characterized by woody dominance prevail. This reduces the frequency and intensity of surface fires, further limiting their effectiveness for controlling cover of woody plants. In addition, grazing pressure (exotic or native grazers) can reinforce woody encroachment by potentially reducing fine-fuel loads. We investigated the effects of different fire energies on the herbaceous plant community, together with mammalian wildlife herbivory (exotic and native combined) exclusion, to inform best management practices. Location: Texas semi-arid savanna, southern Great Plains, USA. Methods: We conducted an experiment in which we manipulated fire intensity and herbivore access to herbaceous biomass in a split-plot design. We altered fire energy via fuel addition rather than applying fire under different environmental conditions to control for differences in standing biomass and composition attributable to differential plant physiological status and fire season. Results: High-energy fire did not reduce herbaceous biomass or alter plant community composition, although it did increase among-plot variability in composition and forb biomass relative to low-energy fire and non-burned controls. Grazing pressure from native and non-native mammalian herbivores reduced above-ground herbaceous biomass regardless of fire treatments, but did not alter community composition. Conclusions: Managers seeking to apply high-intensity prescribed fire to reduce woody encroachment will not negatively impact herbaceous plant productivity or alter community composition. However, they should be cognizant that repeated fires necessary for greatly reducing woody plants in heavily invaded areas might be difficult to accomplish due to fine-fuel reduction from wild herbivores. High fencing to restrict access by wildlife herbivores or culling might be necessary to build fuels sufficient to conduct high-intensity burns for woody-plant reductio

    Of monkeys and men:Impatience in perceptual decision-making

    Get PDF
    For decades sequential sampling models have successfully accounted for human and monkey decision-making, relying on the standard assumption that decision makers maintain a pre-set decision standard throughout the decision process. Based on the theoretical argument of reward rate maximization, some authors have recently suggested that decision makers become increasingly impatient as time passes and therefore lower their decision standard. Indeed, a number of studies show that computational models with an impatience component provide a good fit to human and monkey decision behavior. However, many of these studies lack quantitative model comparisons and systematic manipulations of rewards. Moreover, the often-cited evidence from single-cell recordings is not unequivocal and complimentary data from human subjects is largely missing. We conclude that, despite some enthusiastic calls for the abandonment of the standard model, the idea of an impatience component has yet to be fully established; we suggest a number of recently developed tools that will help bring the debate to a conclusive settlement

    Recoupling fire and grazing reduces wildland fuel loads on rangelands

    Get PDF
    Fire suppression and exclusion, the historically dominant paradigm of fire management, has resulted in major modifications of fire-dependent ecosystems worldwide. These changes are partially credited with a recent increase in wildfire number and extent, as well as more extreme fire behavior. Fire and herbivory historically interacted, and research has shown that the interaction creates a unique mosaic of vegetation heterogeneity that each disturbance alone does not create. Because fire and grazing have largely been decoupled in modern times, the degree to which the interaction affects fuels and fire regimes has not yet been quantified. We evaluated effects of fire-only and pyric herbivory on rangeland fuels and fire behavior simulated using BehavePlus at four sites across the southern Great Plains.We predicted patches managed via pyric herbivory would maintain lower fuel loads, and less intense simulated fire behavior than fire alone. We found that time since fire was a significant predictor of fuel loads and simulated fire behavior characteristics at all sites. Fuel loads and simulated fire behavior characteristics (flame length and rate of spread) increased with increasing time since fire in all simulated weather scenarios. Pyric herbivory mediated fuel accumulation at all sites. Mean fuel loads in fire-only treatments exceeded 5000 kg/ha within 24 months, but pyric herbivory treatments remained below 5000 kg/ha for approximately 36 months. Simulated flame lengths in fire-only treatments were consistently higher (up to 3 9 ) than in pyric herbivory treatments. Similarly, fire spread rates were higher in fire-only than in pyric herbivory treatments in all simulated weather conditions. Although all sites had potential to burn in the most extreme weather conditions, pyric herbivory reduced fuel accumulations, flame lengths, and rates of spread across all weather patterns simulated. These reductions extended the amount of time standard wildland firefighting techniques remain effective. Therefore, incorporating pyric herbivory into fuel management practices, in areas of high herbaceous productivity, increases the effectiveness of fuel treatments

    Heavier rumen-reticulum organs in white-tailed deer is consistent with dietary bulk not quality

    No full text
    The organs that make up the gastrointestinal tract have high energy demands. Therefore, when these organs vary in mass they should impact metabolic requirements. Mass of the rumen-reticulum organs, the organs that comprise the largest part of the gastrointestinal tract of ruminants, might vary from bulk or nutrient availability of the diet. We examined differences in mass of the rumen-reticulum organs in white-tailed deer (Odocoileus virginianus Zimmerman, 1780)) from two sites in Texas, USA with different diet types. Specifically, at one site deer were fed a pelleted ration and at the other site deer consumed a natural browse diet. Accounting for body mass, deer consuming the browse diet had rumen-reticulum organ masses that were about 1.7 times heavier than deer consuming the pelleted diet. Deer consuming the browse diet also had lower diet quality, as indexed by crude protein concentration, than deer consuming the pelleted diet. The digesta loads of deer, however, were similar for the two types of diet. Our study findings are consistent with increased mass of rumen-reticulum organs from greater bulk, not diet quality. Understanding variation in rumen-reticulum organ mass has implications for understanding energy conservation in white-tailed deer.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore