18 research outputs found
FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections
Purpose: One of the most frequently cited radiomics investigations showed that features automatically extracted from routine clinical images could be used in prognostic modeling. These images have
been made publicly accessible via The Cancer Imaging Archive (TCIA). There have been numerous
requests for additional explanatory metadata on the following datasets — RIDER, Interobserver,
Lung1, and Head–Neck1. To support repeatability, reproducibility, generalizability, and transparency
in radiomics research, we publish the subjects’ clinical data, extracted radiomics features, and digital
imaging and communications in medicine (DICOM) headers of these four datasets with descriptive
metadata, in order to be more compliant with findable, accessible, interoperable, and reusable (FAIR)
data management principles.
Acquisition and validation methods: Overall survival time intervals were updated using a national
citizens registry after internal ethics board approval. Spatial offsets of the primary gross tumor volume (GTV) regions of interest (ROIs) associated with the Lung1 CT series were improved on the
TCIA. GTV radiomics features were extracted using the open-source Ontology-Guided Radiomics
Analysis Workflow (O-RAW). We reshaped the output of O-RAW to map features and extraction settings to the latest version of Radiomics Ontology, so as to be consistent with the Image Biomarker
Standardization Initiative (IBSI). Digital imaging and communications in medicine metadata was
extracted using a research version of Semantic DICOM (SOHARD, GmbH, Fuerth; Germany). Subjects’ clinical data were described with metadata using the Radiation Oncology Ontology. All of the
above were published in Resource Descriptor Format (RDF), that is, triples. Example SPARQL
queries are shared with the reader to use on the online triples archive, which are intended to illustrate
how to exploit this data submission. Data format: The accumulated RDF data are publicly accessible through a SPARQL endpoint
where the triples are archived. The endpoint is remotely queried through a graph database web application at http://sparql.cancerdata.org. SPARQL queries are intrinsically federated, such that we can
efficiently cross-reference clinical, DICOM, and radiomics data within a single query, while being
agnostic to the original data format and coding system. The feder
New implementation of data standards for AI research in precision oncology. Experience from EuCanImage
An unprecedented amount of personal health data, with the potential to revolutionise precision medicine, is generated at healthcare institutions worldwide. The exploitation of such data using artificial intelligence relies on the ability to combine heterogeneous, multicentric, multimodal and multiparametric data, as well as thoughtful representation of knowledge and data availability. Despite these possibilities, significant methodological challenges and ethico-legal constraints still impede the real-world implementation of data models. The EuCanImage is an international consortium aimed at developing AI algorithms for precision medicine in oncology and enabling secondary use of the data based on necessary ethical approvals. The use of well-defined clinical data standards to allow interoperability was a central element within the initiative. The consortium is focused on three different cancer types and addresses seven unmet clinical needs. This article synthesises our experience and procedures for healthcare data interoperability and standardisation.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952103.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThis study describes a new process to harmonize and standardize clinical data. The data will be available upon request to the authors
New implementation of data standards for AI research in precision oncology. Experience from EuCanImage
An unprecedented amount of personal health data, with the potential to revolutionise precision medicine, is generated at healthcare institutions worldwide. The exploitation of such data using artificial intelligence relies on the ability to combine heterogeneous, multicentric, multimodal and multiparametric data, as well as thoughtful representation of knowledge and data availability. Despite these possibilities, significant methodological challenges and ethico-legal constraints still impede the real-world implementation of data models. The EuCanImage is an international consortium aimed at developing AI algorithms for precision medicine in oncology and enabling secondary use of the data based on necessary ethical approvals. The use of well-defined clinical data standards to allow interoperability was a central element within the initiative. The consortium is focused on three different cancer types and addresses seven unmet clinical needs. This article synthesises our experience and procedures for healthcare data interoperability and standardisation.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952103.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThis study describes a new process to harmonize and standardize clinical data. The data will be available upon request to the authors
Reproducible radiomics through automated machine learning validated on twelve clinical applications
Radiomics uses quantitative medical imaging features to predict clinical outcomes. Currently, in a new clinical application, findingthe optimal radiomics method out of the wide range of available options has to be done manually through a heuristic trial-anderror process. In this study we propose a framework for automatically optimizing the construction of radiomics workflows perapplication. To this end, we formulate radiomics as a modular workflow and include a large collection of common algorithms foreach component. To optimize the workflow per application, we employ automated machine learning using a random search andensembling. We evaluate our method in twelve different clinical applications, resulting in the following area under the curves: 1)liposarcoma (0.83); 2) desmoid-type fibromatosis (0.82); 3) primary liver tumors (0.80); 4) gastrointestinal stromal tumors (0.77);5) colorectal liver metastases (0.61); 6) melanoma metastases (0.45); 7) hepatocellular carcinoma (0.75); 8) mesenteric fibrosis(0.80); 9) prostate cancer (0.72); 10) glioma (0.71); 11) Alzheimer’s disease (0.87); and 12) head and neck cancer (0.84). Weshow that our framework has a competitive performance compared human experts, outperforms a radiomics baseline, and performssimilar or superior to Bayesian optimization and more advanced ensemble approaches. Concluding, our method fully automaticallyoptimizes the construction of radiomics workflows, thereby streamlining the search for radiomics biomarkers in new applications.To facilitate reproducibility and future research, we publicly release six datasets, the software implementation of our framework,and the code to reproduce this study
Prognostic value of total tumor volume in patients with colorectal liver metastases:A secondary analysis of the randomized CAIRO5 trial with external cohort validation
Background:This study aimed to assess the prognostic value of total tumor volume (TTV) for early recurrence (within 6 months) and overall survival (OS) in patients with colorectal liver metastases (CRLM), treated with induction systemic therapy followed by complete local treatment.Methods: Patients with initially unresectable CRLM from the multicenter randomized phase 3 CAIRO5 trial (NCT02162563) who received induction systemic therapy followed by local treatment were included. Baseline TTV and change in TTV as response to systemic therapy were calculated using the CT scan before and the first after systemic treatment, and were assessed for their added prognostic value. The findings were validated in an external cohort of patients treated at a tertiary center. Results:In total, 215 CAIRO5 patients were included. Baseline TTV and absolute change in TTV were significantly associated with early recurrence (P = 0.005 and P = 0.040, respectively) and OS in multivariable analyses (P = 0.024 and P = 0.006, respectively), whereas RECIST1.1 was not prognostic for early recurrence (P = 0.88) and OS (P = 0.35). In the validation cohort (n = 85), baseline TTV and absolute change in TTV remained prognostic for early recurrence (P = 0.041 and P = 0.021, respectively) and OS in multivariable analyses (P < 0.0001 and P = 0.012, respectively), and showed added prognostic value over conventional clinicopathological variables (increase C-statistic, 0.06; 95 % CI, 0.02 to 0.14; P = 0.008). Conclusion: Total tumor volume is strongly prognostic for early recurrence and OS in patients who underwent complete local treatment of initially unresectable CRLM, both in the CAIRO5 trial and the validation cohort. In contrast, RECIST1.1 did not show prognostic value for neither early recurrence nor OS.</p
Future-ai:International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and
healthcare, the deployment and adoption of AI technologies remain limited in
real-world clinical practice. In recent years, concerns have been raised about
the technical, clinical, ethical and legal risks associated with medical AI. To
increase real world adoption, it is essential that medical AI tools are trusted
and accepted by patients, clinicians, health organisations and authorities.
This work describes the FUTURE-AI guideline as the first international
consensus framework for guiding the development and deployment of trustworthy
AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and
currently comprises 118 inter-disciplinary experts from 51 countries
representing all continents, including AI scientists, clinicians, ethicists,
and social scientists. Over a two-year period, the consortium defined guiding
principles and best practices for trustworthy AI through an iterative process
comprising an in-depth literature review, a modified Delphi survey, and online
consensus meetings. The FUTURE-AI framework was established based on 6 guiding
principles for trustworthy AI in healthcare, i.e. Fairness, Universality,
Traceability, Usability, Robustness and Explainability. Through consensus, a
set of 28 best practices were defined, addressing technical, clinical, legal
and socio-ethical dimensions. The recommendations cover the entire lifecycle of
medical AI, from design, development and validation to regulation, deployment,
and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which
provides a structured approach for constructing medical AI tools that will be
trusted, deployed and adopted in real-world practice. Researchers are
encouraged to take the recommendations into account in proof-of-concept stages
to facilitate future translation towards clinical practice of medical AI
Prognostic value of total tumor volume in patients with colorectal liver metastases: A secondary analysis of the randomized CAIRO5 trial with external cohort validation
Background: This study aimed to assess the prognostic value of total tumor volume (TTV) for early recurrence (within 6 months) and overall survival (OS) in patients with colorectal liver metastases (CRLM), treated with induction systemic therapy followed by complete local treatment. Methods: Patients with initially unresectable CRLM from the multicenter randomized phase 3 CAIRO5 trial (NCT02162563) who received induction systemic therapy followed by local treatment were included. Baseline TTV and change in TTV as response to systemic therapy were calculated using the CT scan before and the first after systemic treatment, and were assessed for their added prognostic value. The findings were validated in an external cohort of patients treated at a tertiary center. Results: In total, 215 CAIRO5 patients were included. Baseline TTV and absolute change in TTV were significantly associated with early recurrence (P = 0.005 and P = 0.040, respectively) and OS in multivariable analyses (P = 0.024 and P = 0.006, respectively), whereas RECIST1.1 was not prognostic for early recurrence (P = 0.88) and OS (P = 0.35). In the validation cohort (n = 85), baseline TTV and absolute change in TTV remained prognostic for early recurrence (P = 0.041 and P = 0.021, respectively) and OS in multivariable analyses (P < 0.0001 and P = 0.012, respectively), and showed added prognostic value over conventional clinicopathological variables (increase C-statistic, 0.06; 95 % CI, 0.02 to 0.14; P = 0.008). Conclusion: Total tumor volume is strongly prognostic for early recurrence and OS in patients who underwent complete local treatment of initially unresectable CRLM, both in the CAIRO5 trial and the validation cohort. In contrast, RECIST1.1 did not show prognostic value for neither early recurrence nor OS