28 research outputs found

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Erratum:Towards a muon collider

    Get PDF

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum: Towards a muon collider

    Get PDF
    The original online version of this article was revised: The additional reference [139] has been added. Tao Han’s ORICD ID has been incorrectly assigned to Chengcheng Han and Chengcheng Han’s ORCID ID to Tao Han. Yang Ma’s ORCID ID has been incorrectly assigned to Lianliang Ma, and Lianliang Ma’s ORCID ID to Yang Ma. The original article has been corrected

    Searches for Supersymmetry with the ATLAS detector

    No full text
    Supersymmetry (SUSY) provides elegant solutions to several problems in the Standard Model, and searches for SUSY particles are an important component of the LHC physics program. This talk will present the latest results from SUSY searches conducted by the ATLAS experiment. The searches target multiple final states and different assumptions about the decay mode of the produced SUSY particles, including searches for both R-parity conserving models and R-parity violating models and their possible connections with the recent observation of the flavour and muon g-2 anomalies. The talk will also highlight the employment of novel analysis techniques, including advanced machine learning techniques and special object reconstruction, that are necessary for many of these analyses to extend the sensitivity reach to challenging regions of the phase space

    SUSY in the ATLAS Experiment

    No full text
    Overview of the SUSY searches for SUSY2019 conferenc

    The search for supersymmetry in hadronic final states using boosted object reconstruction

    No full text
    The Large Hadron Collider (LHC) operates at the highest energy scales ever artificially created in particle collision experiments with a center-of-mass energy √s = 13 TeV. In addition, the high luminosity allows the unique opportunity to probe the Standard Model at the electroweak scale and explore for rare signs of new physics beyond the Standard Model. The coupling of the third-generation top quark to the Higgs boson introduces large, quadratic, radiative corrections to the Higgs mass, requiring a significant amount of fine-tuning that results in a nearly perfect correction of the Higgs mass from the Planck scale to the observable electroweak scale. A possible solution to the naturalness problem proposes a collection of supersymmetric partners to the Standard Model particles with the mass of lightest particles at the electroweak scale: the gluino, the stop squarks, and the lightest supersymmetric particle. This thesis presents the results of a search for gluino pair production decaying via stop squarks to the lightest neutralino in hadronic final states using a total integrated luminosity 36.1 fb−1 of data collected with the ATLAS detector in 2015 and 2016. This analysis considers a simplified supersymmetry model targeting extreme regions of the phase space with large missing transverse momentum, multiple b-tagged jets, and several energetic jets. No excess is observed and limits on the gluino mass are set at the 95% CL, greatly extending the previous results in 2012 from 1.4 TeV to 1.9 TeV. The increase of the LHC luminosity also poses challenges to the current trigger system in the ATLAS detector necessitating planned upgrades. One of the upgrades for the trigger system is the Global Feature Extractor (gFEX) which aims to recover lost efficiency in boosted hadronic final states by identifying large radius jets produced by top quarks, Higgs, Z and W bosons which are critical for future ATLAS physics programs. This module is a unique board with 3 processor FPGAs for data processing and an embedded multi-processor system-on-chip for slow-control and monitoring. This thesis will also describe the work on developing this hardware and several physics upgrade studies on the trigger performance

    (Re)interpretation of the LHC results for new physics

    No full text
    A tutorial of a full reinterpretation pipeline using MaPyDe, with a reproduction pipeline by incorporating ATLAS SimpleAnalysi

    Boosted object hardware trigger development and testing for the Phase I upgrade of the ATLAS Experiment

    No full text
    The Global Feature Extraction (gFEX) module is a Level 1 jet trigger system planned for installation in ATLAS during the Phase 1 upgrade in 2018. The gFEX selects large-radius jets for capturing Lorentz-boosted objects by means of wide-area jet algorithms refined by subjet information. The architecture of the gFEX permits event-by-event local pile-up suppression for these jets using the same subtraction techniques developed for offline analyses. The gFEX architecture is also suitable for other global event algorithms such as missing transverse energy (MET), centrality for heavy ion collisions, and "jets without jets". The gFEX will use 4 processor FPGAs to perform calculations on the incoming data and a Hybrid APU-FPGA for slow control of the module. The gFEX is unique in both design and implementation and substantially enhance the selectivity of the L1 trigger and increases sensitivity to key physics channels
    corecore