4 research outputs found

    Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier

    Get PDF
    Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction

    Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    Get PDF
    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented

    Investigating Holey Metamaterial Effects in Terahertz Traveling-Wave Tube Amplifier

    Get PDF
    Applying subwavelength holes to a novel traveling-wave tube amplifier is investigated. Plans to increase the on-axis impedance are discussed as well as optimization schemes to achieve this goal. Results suggest that an array of holes alone cannot significantly change the on-axis electric field in the vicinity of the electron beam. However, models of a beam tunnel with corrugated walls show promise in maximizing the amplifier s on-axis impedance. Additional work is required on the subject, and suggestions are made to determine research directions
    corecore