46 research outputs found

    Preclinical Assessment of HIV Vaccines and Microbicides by Repeated Low-Dose Virus Challenges

    Get PDF
    BACKGROUND: Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect against “real life” exposures. The belief that experiments involving realistically low challenge doses require large numbers of animals has so far prevented the development of alternatives to using high challenge doses. METHODS AND FINDINGS: Using statistical power analysis, we investigate how many animals would be needed to conduct preclinical trials using low virus challenge doses. We show that experimental designs in which animals are repeatedly challenged with low doses do not require unfeasibly large numbers of animals to assess vaccine or microbicide success. CONCLUSION: Preclinical trials using repeated low-dose challenges represent a promising alternative approach to identify potential preventive interventions

    SIVsm Quasispecies Adaptation to a New Simian Host

    Get PDF
    Despite the potential for infectious agents harbored by other species to become emerging human pathogens, little is known about why some agents establish successful cross-species transmission, while others do not. The simian immunodeficiency viruses (SIVs), certain variants of which gave rise to the human HIV-1 and HIV-2 epidemics, have demonstrated tremendous success in infecting new host species, both simian and human. SIVsm from sooty mangabeys appears to have infected humans on several occasions, and was readily transmitted to nonnatural Asian macaque species, providing animal models of AIDS. Here we describe the first in-depth analysis of the tremendous SIVsm quasispecies sequence variation harbored by individual sooty mangabeys, and how this diverse quasispecies adapts to two different host species—new nonnatural rhesus macaque hosts and natural sooty mangabey hosts. Viral adaptation to rhesus macaques was associated with the immediate amplification of a phylogenetically related subset of envelope (env) variants. These variants contained a shorter variable region 1 loop and lacked two specific glycosylation sites, which may be selected for during acute infection. In contrast, transfer of SIVsm to its natural host did not subject the quasispecies to any significant selective pressures or bottleneck. After 100 d postinfection, variants more closely representative of the source inoculum reemerged in the macaques. This study describes an approach for elucidating how pathogens adapt to new host species, and highlights the particular importance of SIVsm env diversity in enabling cross-species transmission. The replicative advantage of a subset of SIVsm variants in macaques may be related to features of target cells or receptors that are specific to the new host environment, and may involve CD4-independent engagement of a viral coreceptor conserved among primates

    Similar Impact of CD8+ T Cell Responses on Early Virus Dynamics during SIV Infections of Rhesus Macaques and Sooty Mangabeys

    Get PDF
    Despite comparable levels of virus replication, simian immunodeficiency viruses (SIV) infection is non-pathogenic in natural hosts, such as sooty mangabeys (SM), whereas it is pathogenic in non-natural hosts, such as rhesus macaques (RM). Comparative studies of pathogenic and non-pathogenic SIV infection can thus shed light on the role of specific factors in SIV pathogenesis. Here, we determine the impact of target-cell limitation, CD8+ T cells, and Natural Killer (NK) cells on virus replication in the early SIV infection. To this end, we fit previously published data of experimental SIV infections in SMs and RMs with mathematical models incorporating these factors and assess to what extent the inclusion of individual factors determines the quality of the fits. We find that for both rhesus macaques and sooty mangabeys, target-cell limitation alone cannot explain the control of early virus replication, whereas including CD8+ T cells into the models significantly improves the fits. By contrast, including NK cells does only significantly improve the fits in SMs. These findings have important implications for our understanding of SIV pathogenesis as they suggest that the level of early CD8+ T cell responses is not the key difference between pathogenic and non-pathogenic SIV infection

    Contribution of Peaks of Virus Load to Simian Immunodeficiency Virus Pathogenesis

    No full text
    The mechanisms causing AIDS and subsequently death in human immunodeficiency virus type 1 infection are not yet fully understood. Nonetheless, correlates of accelerated progression to disease based on immunological and virological markers have been identified. The best correlate identified to date is the baseline virus load or the so-called viral set point. By focusing on a virus load measurement from a restricted time range, however, we ignore valuable information contained in the long-term profile of the virus load. Here, we investigate the relationship between virus load and survival with the aid of a statistical model. The model takes into consideration the virus load at every stage of the disease. In particular, we aim to determine the effect of peaks of virus load on disease progression. We fit our model to unique sequential viral load data of 12 simian immunodeficiency virus mac251-infected rhesus macaques which contain frequent measurements throughout the entire course of the infection until the development of simian AIDS. Our model enables us to predict the survival times of the animals more accurately than an equivalent model which considers the viral set point only. Furthermore, we find that peaks of the virus load contribute less to disease progression than phases of low virus load with the same amount of viral turnover. Our analysis implies that the total viral turnover is not the best correlate of survival. As a consequence, the direct cytopathic effects of virus replication may, by themselves, have less of an impact on disease progression than previously thought

    Roles of Target Cells and Virus-Specific Cellular Immunity in Primary Simian Immunodeficiency Virus Infection

    No full text
    There is an ongoing debate on whether acute human immunodeficiency virus infection is controlled by target cell limitation or by virus-specific cellular immunity. To resolve this question, we developed a novel mathematical modeling scheme which allows us to incorporate measurements of virus load, target cells, and virus-specific immunity and applied it to a comprehensive data set generated in an experiment involving rhesus macaques infected with simian immunodeficiency virus. Half of the macaques studied were treated during the primary infection period with reagents which block T-cell costimulation and as a result displayed severely impaired virus-specific immune responses. Our results show that early viral replication in normal infection is controlled to a large extent by virus-specific CD8(+) T cells and not by target cell limitation

    Slowly Declining Levels of Viral RNA and DNA in DNA/Recombinant Modified Vaccinia Virus Ankara-Vaccinated Macaques with Controlled Simian-Human Immunodeficiency Virus SHIV-89.6P Challenges

    No full text
    In a recent vaccine trial, we showed efficient control of a virulent simian-human immunodeficiency virus SHIV-89.6P challenge by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env- expressing recombinant-modified vaccinia virus Ankara. Here we show that long-term control has been associated with slowly declining levels of viral RNA and DNA. In the vaccinated animals both viral DNA and RNA underwent an initial rapid decay, which was followed by a lower decay rate. Between 12 and 70 weeks postchallenge, the low decay rates have had half-lives of about 20 weeks for viral RNA in plasma and viral DNA in peripheral blood mononuclear cells and lymph nodes. In vaccinated animals the viral DNA has been mostly unintegrated and has appeared to be largely nonfunctional as evidenced by a poor ability to recover infectious virus in cocultivation assays, even after CD8 depletion. In contrast, in control animals, which have died, viral DNA was mostly integrated and a larger proportion appeared to be functional as evidenced by the recovery of infectious virus. Thus, to date, control of the challenge infection has appeared to improve with time, with the decay rates for viral DNA being at the lower end of values reported for patients on highly active antiretroviral therapy

    Impact of Heterogeneity in Susceptibility on the Statistical Power

    No full text
    <div><p>(A) Susceptibility distributions for different levels of heterogeneity, measured by the coefficient of variation, <i>CV,</i> of the susceptibility distribution. The vaccine is assumed to be 80% effective, <i>VE<sub>S</sub> =</i> 0.8.</p> <p>(B) The statistical power depends on the coefficient of variation, <i>CV,</i> for the repeated low-dose challenge design (black lines) and the single low-dose challenge design (green lines). For these plots we assumed trials with six and 12 animals per group and vaccine efficacies of <i>VE<sub>S</sub> =</i> 0.67 (dotted lines), <i>VE<sub>S</sub> =</i> 0.8 (dashed lines), and <i>VE<sub>S</sub> =</i> 0.9 (solid lines).</p></div

    Single and Repeated Low-Dose Challenge Designs

    No full text
    <p>Figure shows designs for single (A) and repeated (B) low-dose challenge designs. Small arrows denote challenges, and white and red symbols denote uninfected and infected animals, respectively.</p
    corecore