143 research outputs found

    Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium

    Get PDF
    Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound‐associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE (2)) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β‐catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE (2)‐Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE (2) and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury

    HER2 and APC mutations promote altered crypt-villus morphology and marked hyperplasia in the intestinal epithelium

    Get PDF
    BACKGROUND AND AIMS: The Cancer Genome Atlas (TCGA) project has identified HER2 mutations or amplification in 7% of colon cancers. In addition to HER2 mutations, colon cancer patients also possess co-occurring mutations in genes such as APC. Here, we investigated the role of HER2 and APC mutations on the crypt-villus architecture of the intestinal epithelium, localization of secretory cells, and expression of intestinal stem cell markers. METHODS: We generated a HER2 transgenic mouse (HER2 RESULTS: HER2 CONCLUSIONS: We established an epithelial intrinsic role for HER

    Adaptive immunity restricts replication of novel murine astroviruses

    Get PDF
    The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1(−/−) mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1(−/−) mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease

    HOIL1 regulates group 2 innate lymphoid cell numbers and type 2 inflammation in the small intestine

    Get PDF
    Patients with mutations in HOIL1 experience a complex immune disorder including intestinal inflammation. To investigate the role of HOIL1 in regulating intestinal inflammation, we employed a mouse model of partial HOIL1 deficiency. The ileum of HOIL1-deficient mice displayed features of type 2 inflammation including tuft cell and goblet cell hyperplasia, and elevated expression of Il13, Il5 and Il25 mRNA. Inflammation persisted in the absence of T and B cells, and bone marrow chimeric mice revealed a requirement for HOIL1 expression in radiation-resistant cells to regulate inflammation. Although disruption of IL-4 receptor alpha (IL4Rα) signaling on intestinal epithelial cells ameliorated tuft and goblet cell hyperplasia, expression of Il5 and Il13 mRNA remained elevated. KLRG

    Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice

    Get PDF
    ISG15 is a diubiquitin-like modifier and one of the most rapidly induced genes upon type I interferon stimulation. Hundreds of host proteins and a number of viral proteins have been shown to be ISGylated, and understanding how these modifications affect the interferon response and virus replication has been of considerable interest. ISG15(−/−) mice exhibit increased susceptibility to viral infection, and in the case of influenza B virus and vaccinia virus, ISG15 conjugation has been shown to restrict virus replication in vivo. A number of studies have also found that ISG15 is capable of antagonizing replication of some viruses in tissue culture. However, recent findings have demonstrated that ISG15 can protect mice from Chikungunya virus infection without affecting the virus burden. In order to better understand the function of ISG15 in vivo, we characterized the pathogenesis of influenza A virus and Sendai virus in ISG15(−/−) mice. We found that ISG15 protects mice from virus induced lethality by a conjugation-dependent mechanism in both of these models. However, surprisingly, we found that ISG15 had minimal effect on virus replication and did not have an obvious role in the modulation of the acute immune response to infection. Instead, we observed an increase in the number of diseased small airways in mice lacking ISG15. This ability of ISG15 to protect mice in a conjugation-dependent, but nonantiviral, manner from respiratory virus infection represents a previously undescribed role for ISG15 and demonstrates the importance of further characterization of ISG15 in vivo. IMPORTANCE It has previously been demonstrated that ISG15(−/−) mice are more susceptible to a number of viral infections. Since ISG15 is one of the most strongly induced genes after type I interferon stimulation, analysis of ISG15 function has largely focused on its role as an antiviral molecule during acute infection. Although a number of studies have shown that ISG15 does have a small effect on virus replication in tissue culture, few studies have confirmed this mechanism of protection in vivo. In these studies we have found that while ISG15(−/−) mice are more susceptible to influenza A virus and Sendai virus infections, ISGylation does not appear to mediate this protection through the direct inhibition of virus replication or the modulation of the acute immune response. Thus, in addition to showing a novel mode of ISG15 mediated protection from virus infection, this study demonstrates the importance of studying the role of ISG15 in vivo

    A novel strategy to increase the proliferative potential of adult human β-cells while maintaining their differentiated phenotype

    Get PDF
    Our previous studies demonstrated that Wnt/GSK-3/β-catenin and mTOR signaling are necessary to stimulate proliferative processes in adult human β-cells. Direct inhibition of GSK-3, that engages Wnt signaling downstream of the Wnt receptor, increases β-catenin nuclear translocation and β-cell proliferation but results in lower insulin content. Our current goal was to engage canonical and non-canonical Wnt signaling at the receptor level to significantly increase human β-cell proliferation while maintaining a β-cell phenotype in intact islets. We adopted a system that utilized conditioned medium from L cells that expressed Wnt3a, R-spondin-3 and Noggin (L-WRN conditioned medium). In addition we used a ROCK inhibitor (Y-27632) and SB-431542 (that results in RhoA inhibition) in these cultures. Treatment of intact human islets with L-WRN conditioned medium plus inhibitors significantly increased DNA synthesis ∼6 fold in a rapamycin-sensitive manner. Moreover, this treatment strikingly increased human β-cell proliferation ∼20 fold above glucose alone. Only the combination of L-WRN conditioned medium with RhoA/ROCK inhibitors resulted in substantial proliferation. Transcriptome-wide gene expression profiling demonstrated that L-WRN medium provoked robust changes in several signaling families, including enhanced β-catenin-mediated and β-cell-specific gene expression. This treatment also increased expression of Nr4a2 and Irs2 and resulted in phosphorylation of Akt. Importantly, glucose-stimulated insulin secretion and content were not downregulated by L-WRN medium treatment. Our data demonstrate that engaging Wnt signaling at the receptor level by this method leads to necessary crosstalk between multiple signaling pathways including activation of Akt, mTOR, Wnt/β-catenin, PKA/CREB, and inhibition of RhoA/ROCK that substantially increase human β-cell proliferation while maintaining the β-cell phenotype

    A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability

    Get PDF
    Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using air-liquid interface (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion \u3e 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions
    corecore