176 research outputs found

    Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases

    Get PDF
    Uncoupling protein 2 (UCP2) is an inner mitochondrial membrane protein that belongs to the uncoupling protein family and plays an important role in lowering mitochondrial membrane potential and dissipating metabolic energy with prevention of oxidative stress accumulation. In the present article, we will review the evidence that UCP2, as a consequence of its roles within the mitochondria, represents a critical player in the predisposition to vascular disease development in both animal models and in humans, particularly in relation to obesity, diabetes, and hypertension. The deletion of the UCP2 gene contributes to atherosclerosis lesion development in the knockout mice, also showing significantly shorter lifespan. The UCP2 gene downregulation is a key determinant of higher predisposition to renal and cerebrovascular damage in an animal model of spontaneous hypertension and stroke. In contrast, UCP2 overexpression improves both hyperglycemia- and high-salt diet-induced endothelial dysfunction and ameliorates hypertensive target organ damage in SHRSP. Moreover, drugs (fenofibrate and sitagliptin) and several vegetable compounds (extracts from Brassicaceae, berberine, curcumin, and capsaicin) are able to induce UCP2 expression level and to exert beneficial effects on the occurrence of vascular damage. As a consequence, UCP2 becomes an interesting therapeutic target for the treatment of common human vascular diseases

    Phase diagram of QCD in strong background magnetic field

    Full text link
    We discuss the phase diagram of QCD in the presence of a strong background magnetic field, providing numerical evidence, based on lattice simulations of QCD with 2+12+1 flavours and physical quark masses, that the QCD crossover turns into a first order phase transition for large enough magnetic field, with a critical endpoint located between eB=4eB=4 GeV2^2 (where we found an analytic crossover at a pseudo-critical temperature Tc=(98±3)T_c=(98\pm3) MeV) and eB=9eB=9 GeV2^2 (where the measured critical temperature is Tc=(63±5)T_c=(63\pm5) MeV).Comment: 6 pages, 8 figures; contribution to the proceedings of the International Conference on High Energy Physics (ICHEP 2022), July 6-13, 2022, Bologna (Italy

    Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

    Get PDF
    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension

    C2238/αANP modulates apolipoprotein E through Egr-1/miR199a in vascular smooth muscle cells in vitro

    Get PDF
    Subjects carrying the T2238C ANP gene variant have a higher risk to suffer a stroke or myocardial infarction. The mechanisms through which T2238C/αANP exerts detrimental vascular effects need to be fully clarified. In the present work we aimed at exploring the impact of C2238/αANP (mutant form) on atherosclerosis-related pathways. As a first step, an atherosclerosis gene expression macroarray analysis was performed in vascular smooth muscle cells (VSMCs) exposed to either T2238/αANP (wild type) or C2238/αANP. The major finding was that apolipoprotein E (ApoE) gene expression was significantly downregulated by C2238/αANP and it was upregulated by T2238/αANP. We subsequently found that C2238/αANP induces ApoE downregulation through type C natriuretic peptide receptor (NPR-C)-dependent mechanisms involving the upregulation of miR199a-3p and miR199a-5p and the downregulation of DNAJA4. In fact, NPR-C knockdown rescued ApoE level. Upregulation of miR199a by NPR-C was mediated by a reactive oxygen species-dependent increase of the early growth response protein-1 (Egr-1) transcription factor. In fact, Egr-1 knockdown abolished the impact of C2238/αANP on ApoE and miR199a. Of note, downregulation of ApoE by C2238/αANP was associated with a significant increase in inflammation, apoptosis and necrosis that was completely rescued by the exogenous administration of recombinant ApoE. In conclusion, our study dissected a novel mechanism of vascular damage exerted by C2238/αANP that is mediated by ApoE downregulation. We provide the first demonstration that C2238/αANP downregulates ApoE in VSMCs through NPR-C-dependent activation of Egr-1 and the consequent upregulation of miR199a. Restoring ApoE levels could represent a potential therapeutic strategy to counteract the harmful effects of C2238/αANP

    Atrial natriuretic peptide (ANP) gene promoter variant and increased susceptibility to early development of hypertension in humans.

    Get PDF
    Previous evidence supports a role of atrial natriuretic peptide (ANP) as a candidate gene for hypertension. We characterized an ANP gene promoter variant, which has been associated with lower peptide levels, in a sample of young male subjects from Southern Italy (n=395, mean age=35.2+/-2 years) followed up for 28 years. In this cohort, the ANP gene variant was associated with early blood pressure increase and predisposition to develop hypertension

    Beneficial Effects of Citrus Bergamia Polyphenolic Fraction on Saline Load-Induced Injury in Primary Cerebral Endothelial Cells from the Stroke-Prone Spontaneously Hypertensive Rat Model

    Get PDF
    High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders

    Functional Role of Natriuretic Peptides in Risk Assessment and Prognosis of Patients with Mitral Regurgitation

    Get PDF
    The management of mitral valve regurgitation (MR), a common valve disease, represents a challenge in clinical practice, since the indication for either surgical or percutaneous valve replacement or repair are guided by symptoms and by echocardiographic parameters which are not always feasible. In this complex scenario, the use of natriuretic peptide (NP) levels would serve as an additive diagnostic and prognostic tool. These biomarkers contribute to monitoring the progression of the valve disease, even before the development of hemodynamic consequences in a preclinical stage of myocardial damage. They may contribute to more accurate risk stratification by identifying patients who are more likely to experience death from cardiovascular causes, heart failure, and cardiac hospitalizations, thus requiring surgical management rather than a conservative approach. This article provides a comprehensive overview of the available evidence on the role of NPs in the management, risk evaluation, and prognostic assessment of patients with MR both before and after surgical or percutaneous valve repair. Despite largely positive evidence, a series of controversial findings exist on this relevant topic. Recent clinical trials failed to assess the role of NPs following the interventional procedure. Future larger studies are required to enable the introduction of NP levels into the guidelines for the management of MR

    Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat

    Get PDF
    UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP

    Atrial Natriuretic Peptide Gene Polymorphisms and Risk of Ischemic Stroke in Humans

    Get PDF
    Background and Purpose— A precise definition of genetic factors responsible for common forms of stroke is still lacking. The purpose of the present study was to investigate the contributory role of the genes encoding atrial natriuretic peptide ( ANP ) and type A natriuretic peptide receptor ( NPRA ) in humans' susceptibility to develop ischemic stroke. Methods— Allele and genotype frequencies of ANP and NPRA were characterized in an Italian case-control study with patients affected by vascular disease or risk factors. Subjects were recruited from the island of Sardinia (206 cases, 236 controls). Results— A significant association between the ANP /TC2238 polymorphic site and stroke occurrence was found when a recessive model of inheritance was assumed. The risk conferred by this mutant genotype, when estimated by multivariate logistic regression analysis, was 3.8 (95% confidence interval, 1.4 to 10.9). A significantly increased risk of stroke recurrence was observed among cases carrying the ANP /CC2238 genotype compared with cases carrying the ANP /TT2238 genotype ( P =0.04). No direct association of NPRA with stroke occurrence was detected. However, a significant epistatic interaction between the ANP /CC2238 genotype and an allelic variant of NPRA led to a 5.5-fold increased risk of stroke (95% confidence interval, 1.5 to 19.4). Conclusions— Our findings support a direct contributory role of ANP to stroke in humans. A significant interaction between ANP and NPRA on stroke occurrence was found

    Dickkopf-3 upregulates VEGF in cultured human endothelial cells by activating activin receptor-like kinase 1 (ALK1) pathway

    Get PDF
    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs
    • …
    corecore