6 research outputs found

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    The research agenda for trauma critical care

    No full text
    In this research agenda on the acute and critical care management of trauma patients, we concentrate on the major factors leading to death, namely haemorrhage and traumatic brain injury (TBI). In haemostasis biology, the results of randomised controlled trials have led to the therapeutic focus moving away from the augmentation of coagulation factors (such as recombinant factor VIIa) and towards fibrinogen supplementation and administration of antifibrinolytics such as tranexamic acid. Novel diagnostic techniques need to be evaluated to determine whether an individualised precision approach is superior to current empirical practice. The timing and efficacy of platelet transfusions remain in question, while new blood products need to be developed and evaluated, including whole blood variants, lyophilised products and novel red cell storage modalities. The current cornerstones of TBI management are intracranial pressure control, maintenance of cerebral perfusion pressure and avoidance of secondary insults (such as hypotension, hypoxaemia, hyperglycaemia and pyrexia). Therapeutic hypothermia and decompressive craniectomy are controversial therapies. Further research into these strategies should focus on identifying which subgroups of patients may benefit from these interventions. Prediction of the long-term outcome early after TBI remains challenging. Early magnetic resonance imaging has recently been evaluated for predicting the long-term outcome in mild and severe TBI. Novel biomarkers may also help in outcome prediction and may predict chronic neurological symptoms. For trauma in general, rehabilitation is complex and multidimensional, and the optimal timing for commencement of rehabilitation needs investigation. We propose priority areas for clinical trials in the next 10\ua0years
    corecore