7 research outputs found

    The Automatic Design of Multimode Resonator Topology with Evolutionary Algorithms

    No full text
    Microwave electromagnetic devices have been used for many applications in tropospheric communication, navigation, radar systems, and measurement. The development of the signal preprocessing units including frequency-selective devices (bandpass filters) determines the reliability and usability of such systems. In wireless sensor network nodes, filters with microstrip resonators are widely used to improve the out-of-band suppression and frequency selectivity. Filters based on multimode microstrip resonators have an order that determines their frequency-selective properties, which is a multiple of the number of resonators. That enables us to reduce the size of systems without deteriorating their selective properties. Various microstrip multimode resonator topologies can be used for both filters and microwave sensors, however, the quality criteria for them may differ. The development of every resonator topology is time consuming. We propose a technique for the automatic generation of the resonator topology with required frequency characteristics based on the use of evolutionary algorithms. The topology is encoded into a set of real valued parameters, which are varied to achieve the desired features. The differential evolution algorithm and the genetic algorithm with simulated binary crossover and polynomial mutation are applied to solve the formulated problem using the dynamic penalties method. The experimental results show that our technique enables us to find microstrip resonator topologies with desired amplitude-frequency characteristics automatically, and manufactured devices demonstrate characteristics very close to the results of the algorithm. The proposed algorithmic approach may be used for automatically exploring the new perspective topologies of resonators used in microwave filters, radar antennas or sensors, in accordance with the defined criteria and constraints

    Possibilities of Neural Network Powder Diffraction Analysis Crystal Structure of Chemical Compounds

    Get PDF
    Some possibilities of using convolutional artificial neural networks (ANN) for powder diffraction structural analysis of crystalline substances have been investigated. First, ANNs are used to classify crystalline systems and space groups according to calculated full-profile diffractograms calculated from the crystal structures of the ICSD database (2017 year). The ICSD database contains 192004 structures, of which 80% was used for in-depth network training, and 20% for independent testing of recognition accuracy. The accuracy of classification by a network of crystalline systems was 87.9%, and that of space groups was 77.2%. Secondly, the ANN is used for a similar classification of structural models generated by the stochastic genetic algorithm in the search processes for triclinic crystal structures of test compound K4SnO4 according to their full-profile diffraction patterns. The classification criterion was the entry of one or several atoms into their crystallographic positions in the structure of a substance. Independent deep network training was performed on 120 thousand structural models of the K4PbO4 triclinic structure generated in several runs of the genetic algorithm. The accuracy of the classification of K4SnO4 structural models exceeded 50%. The results show that deeply trained convolutional ANNs can be effective for classifying crystal structures according to the structural characteristics of their powder diffraction patterns

    ΠšΠΎΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡ бионичСского ΠΈ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² для Π·Π°Π΄Π°Ρ‡ проСктирования искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй

    No full text
    A meta-heuristic called Co-Operation of Biology-Related Algorithms (COBRA) with a fuzzy controller, as well as a new algorithm based on the cooperation of Differential Evolution and Particle Swarm Optimiza- tion (DE+PSO) and developed for solving real-valued optimization problems, were applied to the design of artificial neural networks. The usefulness and workability of both meta-heuristic approaches were demonstrated on various benchmarks. The neural network’s weight coefficients represented as a string of real-valued variables are adjusted with the fuzzy controlled COBRA or with DE+PSO. Two classifica- tion problems (image and speech recognition problems) were solved with these approaches. Experiments showed that both cooperative optimization techniques demonstrate high performance and reliability in spite of the complexity of the solved optimization problems. The workability and usefulness of the proposed meta-heuristic optimization algorithms are confirmedΠ Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ бионичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ (COBRA) Π½Π° основС Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Π° ΠΈ Π½ΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π° Π±Π°Π·Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° роя частиц (DE+PSO) для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вСщСствСнных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ для проСктирования искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. Π Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ†Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ примСнСния ΠΎΠ±Π΅ΠΈΡ… ΠΌΠ΅Ρ‚Π°-эвристик Π±Ρ‹Π»ΠΈ продСмонстрированы Π½Π° мноТСствС тСстовых Π·Π°Π΄Π°Ρ‡. ВСсовыС коэффициСнты Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй Π±Ρ‹Π»ΠΈ прСдставлСны Π² Π²ΠΈΠ΄Π΅ вСщСствСнных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΡΡ‚Ρ€Π°ΠΈΠ²Π°Π»ΠΈΡΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°ΠΌΠΈ COBRA с Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ΠΎΠΌ ΠΈΠ»ΠΈ DE+PSO. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ нСйросСтями Π±Ρ‹Π»ΠΈ Ρ€Π΅ΡˆΠ΅Π½Ρ‹ Π΄Π²Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ классификации (Π·Π°Π΄Π°Ρ‡ΠΈ распознавания ΠΎΠ±Ρ€Π°Π·ΠΎΠ² ΠΈ Ρ€Π΅Ρ‡ΠΈ). ИсслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ эффСктивно, нСсмотря Π½Π° ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π½Π° практичСских Π·Π°Π΄Π°Ρ‡Π°Ρ…

    ΠšΠΎΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡ бионичСского ΠΈ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² для Π·Π°Π΄Π°Ρ‡ проСктирования искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй

    No full text
    A meta-heuristic called Co-Operation of Biology-Related Algorithms (COBRA) with a fuzzy controller, as well as a new algorithm based on the cooperation of Differential Evolution and Particle Swarm Optimiza- tion (DE+PSO) and developed for solving real-valued optimization problems, were applied to the design of artificial neural networks. The usefulness and workability of both meta-heuristic approaches were demonstrated on various benchmarks. The neural network’s weight coefficients represented as a string of real-valued variables are adjusted with the fuzzy controlled COBRA or with DE+PSO. Two classifica- tion problems (image and speech recognition problems) were solved with these approaches. Experiments showed that both cooperative optimization techniques demonstrate high performance and reliability in spite of the complexity of the solved optimization problems. The workability and usefulness of the proposed meta-heuristic optimization algorithms are confirmedΠ Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ бионичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ (COBRA) Π½Π° основС Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Π° ΠΈ Π½ΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π° Π±Π°Π·Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° роя частиц (DE+PSO) для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вСщСствСнных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ для проСктирования искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. Π Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ†Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ примСнСния ΠΎΠ±Π΅ΠΈΡ… ΠΌΠ΅Ρ‚Π°-эвристик Π±Ρ‹Π»ΠΈ продСмонстрированы Π½Π° мноТСствС тСстовых Π·Π°Π΄Π°Ρ‡. ВСсовыС коэффициСнты Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй Π±Ρ‹Π»ΠΈ прСдставлСны Π² Π²ΠΈΠ΄Π΅ вСщСствСнных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΡΡ‚Ρ€Π°ΠΈΠ²Π°Π»ΠΈΡΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°ΠΌΠΈ COBRA с Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ΠΎΠΌ ΠΈΠ»ΠΈ DE+PSO. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ нСйросСтями Π±Ρ‹Π»ΠΈ Ρ€Π΅ΡˆΠ΅Π½Ρ‹ Π΄Π²Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ классификации (Π·Π°Π΄Π°Ρ‡ΠΈ распознавания ΠΎΠ±Ρ€Π°Π·ΠΎΠ² ΠΈ Ρ€Π΅Ρ‡ΠΈ). ИсслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ эффСктивно, нСсмотря Π½Π° ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π½Π° практичСских Π·Π°Π΄Π°Ρ‡Π°Ρ…

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ самоконфигурируСмого гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° для ΡƒΠΏΡ€Π°Π²Π»eния чСловСчСскими рСсурсами

    Get PDF
    This paper describes the problem of human resource management which can appear in many organiza- tions during restructuration periods. The problem is simulated by a dynamic model, similar to a supply chain model with several ranks. The problem of finding the optimal combination of transition coefficients, including the fluctuation coefficients, is transformed into an optimization problem. To solve this prob- lem, a self-configuring genetic algorithm is applied with several constraint handling methods. Additional constraints are defined in order to avoid undesirable oscillations in the system. The results show that this problem can be efficiently solved by the presented methodsΠ’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описываСтся Π·Π°Π΄Π°Ρ‡Π° управлСния чСловСчСскими рСсурсами, которая ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ для ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ рСструктуризации. ПовСдСниС систСмы описываСтся динамичСской ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ модСлью, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ†Π΅ΠΏΠΈ поставок с нСсколькими Ρ€Π°Π½Π³Π°- ΠΌΠΈ. Поиск ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π°ΠΊΠΆΠ΅ коэф- Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΠΉ, сводится ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ этой Π·Π°Π΄Π°Ρ‡ΠΈ примСняСт- ся самоконфигурируСмый гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ с нСсколькими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΡƒΡ‡Π΅Ρ‚Π° ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π² связи с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒ- Π½Ρ‹Ρ… осцилляций Π² систСмС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ поставлСнная Π·Π°Π΄Π°Ρ‡Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ эффСктивно Ρ€Π΅ΡˆΠ΅Π½Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ

    Possibilities of Neural Network Powder Diffraction Analysis Crystal Structure of Chemical Compounds

    Get PDF
    Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ возмоТности примСнСния свСрточных искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй (ИНБ) для ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ структурного Π°Π½Π°Π»ΠΈΠ·Π° кристалличСских вСщСств. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ИНБ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ для классификации кристалличСских систСм ΠΈ пространствСнных Π³Ρ€ΡƒΠΏΠΏ симмСтрии ΠΏΠΎ расчСтным ΠΏΠΎΠ»Π½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌ, вычислСнным ΠΈΠ· кристалличСских структур Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… ICSD 2017 Π³. Π‘Π°Π·Π° ICSD содСрТит 192004 структуры, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… 80 % использовалось для Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния сСти, Π° 20 % для нСзависимого тСстирования точности распознавания. Π’ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации ΡΠ΅Ρ‚ΡŒΡŽ кристалличСских систСм составила 87,9 %, Π° пространствСнных Π³Ρ€ΡƒΠΏΠΏ – 77,2 %. Π’ΠΎ- Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, другая ИНБ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для классификации структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, сгСнСрированных стохастичСским гСнСтичСским Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ Π² процСссах поиска кристалличСских структур тСстовых Ρ‚Ρ€ΠΈΠΊΠ»ΠΈΠ½Π½Ρ‹Ρ… соСдинСний K4SnO4 ΠΈ K4SnO4, ΠΏΠΎ ΠΈΡ… ΠΏΠΎΠ»Π½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌ. Π‘Ρ‹Π»ΠΎ сгСнСрировано ΠΎΠΊΠΎΠ»ΠΎ 150 тысяч структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих структур. Π“Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ сСти Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ Π½Π° Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°Ρ… структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ K4PbO4. ΠžΠ±ΡƒΡ‡Π΅Π½Π½Π°Ρ ΡΠ΅Ρ‚ΡŒ Π±Ρ‹Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для классификации структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ K4SnO4 ΠΏΠΎ ΠΈΡ… Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌ. ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ классификации являлось ΠΏΠΎΠΏΠ°Π΄Π°Π½ΠΈΠ΅ Π°Ρ‚ΠΎΠΌΠΎΠ² Π² ΠΈΡ… кристаллографичСскиС ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π² структурС. Π’ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ Π°Ρ‚ΠΎΠΌΠΎΠ² Π² структурных модСлях K4SnO4 прСвысила 50 %.Some possibilities of using convolutional artificial neural networks (ANN) for powder diffraction structural analysis of crystalline substances have been investigated. First, ANNs are used to classify crystalline systems and space groups according to calculated full-profile diffractograms calculated from the crystal structures of the ICSD database (2017 year). The ICSD database contains 192004 structures, of which 80% was used for in-depth network training, and 20% for independent testing of recognition accuracy. The accuracy of classification by a network of crystalline systems was 87.9%, and that of space groups was 77.2%. Secondly, the ANN is used for a similar classification of structural models generated by the stochastic genetic algorithm in the search processes for triclinic crystal structures of test compound K4SnO4 according to their full-profile diffraction patterns. The classification criterion was the entry of one or several atoms into their crystallographic positions in the structure of a substance. Independent deep network training was performed on 120 thousand structural models of the K4PbO4 triclinic structure generated in several runs of the genetic algorithm. The accuracy of the classification of K4SnO4 structural models exceeded 50%. The results show that deeply trained convolutional ANNs can be effective for classifying crystal structures according to the structural characteristics of their powder diffraction pattern

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ самоконфигурируСмого гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° для ΡƒΠΏΡ€Π°Π²Π»eния чСловСчСскими рСсурсами

    No full text
    This paper describes the problem of human resource management which can appear in many organiza- tions during restructuration periods. The problem is simulated by a dynamic model, similar to a supply chain model with several ranks. The problem of finding the optimal combination of transition coefficients, including the fluctuation coefficients, is transformed into an optimization problem. To solve this prob- lem, a self-configuring genetic algorithm is applied with several constraint handling methods. Additional constraints are defined in order to avoid undesirable oscillations in the system. The results show that this problem can be efficiently solved by the presented methodsΠ’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описываСтся Π·Π°Π΄Π°Ρ‡Π° управлСния чСловСчСскими рСсурсами, которая ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ для ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ рСструктуризации. ПовСдСниС систСмы описываСтся динамичСской ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ модСлью, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ†Π΅ΠΏΠΈ поставок с нСсколькими Ρ€Π°Π½Π³Π°- ΠΌΠΈ. Поиск ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π°ΠΊΠΆΠ΅ коэф- Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΠΉ, сводится ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ этой Π·Π°Π΄Π°Ρ‡ΠΈ примСняСт- ся самоконфигурируСмый гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ с нСсколькими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΡƒΡ‡Π΅Ρ‚Π° ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π² связи с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒ- Π½Ρ‹Ρ… осцилляций Π² систСмС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ поставлСнная Π·Π°Π΄Π°Ρ‡Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ эффСктивно Ρ€Π΅ΡˆΠ΅Π½Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ
    corecore