8,374 research outputs found

    Effect of hydrophobic solutes on the liquid-liquid critical point

    Full text link
    Jagla ramp particles, interacting through a ramp potential with two characteristic length scales, are known to show in their bulk phase thermodynamic and dynamic anomalies, similar to what is found in water. Jagla particles also exhibit a line of phase transitions separating a low density liquid phase and a high density liquid phase, terminating in a liquid-liquid critical point in a region of the phase diagram that can be studied by simulations. Employing molecular dynamics computer simulations, we study the thermodynamics and the dynamics of solutions of hard spheres (HS) in a solvent formed by Jagla ramp particles. We consider the cases of HS mole fraction x = 0.10, 0.15 and 0.20, and also the case x = 0.50 (a 1:1 mixture of HS and Jagla particles). We find a liquid-liquid critical point, up to the highest HS mole fraction; its position shifts to higher pressures and lower temperatures upon increasing x. We also find that the diffusion coefficient anomalies appear to be preserved for all the mole fractions studied.Comment: 8 pages, 7 figures, 1 table. In press (Phys. Rev. E

    Three-Dimensional Percolation Modeling of Self-Healing Composites

    Full text link
    We study the self-healing process of materials with embedded "glue"-carrying cells, in the regime of the onset of the initial fatigue. Three-dimensional numerical simulations within the percolation-model approach are reported. The main numerical challenge taken up in the present work, has been to extend the calculation of the conductance to three-dimensional lattices. Our results confirm the general features of the process: The onset of the material fatigue is delayed, by developing a plateau-like time-dependence of the material quality. We demonstrate that in this low-damage regime, the changes in the conductance and thus, in similar transport/response properties of the material can be used as measures of the material quality degradation. A new feature found for three dimensions, where it is much more profound than in earlier-studied two-dimensional systems, is the competition between the healing cells. Even for low initial densities of the healing cells, they interfere with each other and reduce each other's effective healing efficiency.Comment: 15 pages in PDF, with 6 figure

    Millisecond spin-flip times of donor-bound electrons in GaAs

    Full text link
    We observe millisecond spin-flip relaxation times of donor-bound electrons in high-purity n-GaAs . This is three orders of magnitude larger than previously reported lifetimes in n-GaAs . Spin-flip times are measured as a function of magnetic field and exhibit a strong power-law dependence for fields greater than 4 T . This result is in qualitative agreement with previously reported theory and measurements of electrons in quantum dots.Comment: 4 pages, 4 figure

    Electronic Phase Separation Transition as the Origin of the Superconductivity and the Pseudogap Phase of Cuprates

    Full text link
    We propose a new phase of matter, an electronic phase separation transition that starts near the upper pseudogap and segregates the holes into high and low density domains. The Cahn-Hilliard approach is used to follow quantitatively this second order transition. The resulting grain boundary potential confines the charge in domains and favors the development of intragrain superconducting amplitudes. The zero resistivity transition arises only when the intergrain Josephson coupling EJE_J is of the order of the thermal energy and phase locking among the superconducting grains takes place. We show that this approach explains the pseudogap and superconducting phases in a natural way and reproduces some recent scanning tunneling microscopy dataComment: 4 pages and 5 eps fig

    Experimental Characterisation of GLass Aluminum REinforced (GLARE™) laminates

    Get PDF
    Fibre metal laminates such as GLARE™ have found promising application in the aerospace industry. These laminates were developed at the structures and materials laboratory of Delft University of Technology, Netherlands. GLARE™ is a material belonging to the family of Fibre Metal Laminates consisting of thin aluminum layers bonded with unidirectional S2-Glass fibres with an adhesive. Aluminum and S2-Glass when combined as a hybrid material can provide best features of the both metals and composites. These materials have excellent fatigue, impact and damage tolerance characteristics and a lower density compared to aluminum. GLARE™ has found major application in front and aft upper fuselage, leading edges of empennages of advanced civil aircrafts like A380. This document looks into the evaluation of two configuration of GLARE™ for its mechanical and impact characteristics. The mechanical characterisation was carried out for tensile, compression, Flexure, ILSS, Open Hole Tension, Open Hole Compression and Shear (Iosipescu). The impact behaviour were characterised based on a low velocity drop weight impact carried on these laminates. The study shows that the basic properties evaluated were more dictated by the property of the S2-Glass used. The studies show that GLARE™ laminates posses’ high impact damage resistance compared to other composite material. All the test datas generated for this study will be brought out in this document

    On the distribution of career longevity and the evolution of home run prowess in professional baseball

    Full text link
    Statistical analysis is a major aspect of baseball, from player averages to historical benchmarks and records. Much of baseball fanfare is based around players exceeding the norm, some in a single game and others over a long career. Career statistics serve as a metric for classifying players and establishing their historical legacy. However, the concept of records and benchmarks assumes that the level of competition in baseball is stationary in time. Here we show that power-law probability density functions, a hallmark of many complex systems that are driven by competition, govern career longevity in baseball. We also find similar power laws in the density functions of all major performance metrics for pitchers and batters. The use of performance-enhancing drugs has a dark history, emerging as a problem for both amateur and professional sports. We find statistical evidence consistent with performance-enhancing drugs in the analysis of home runs hit by players in the last 25 years. This is corroborated by the findings of the Mitchell Report [1], a two-year investigation into the use of illegal steroids in major league baseball, which recently revealed that over 5 percent of major league baseball players tested positive for performance-enhancing drugs in an anonymous 2003 survey.Comment: 5 pages, 5 figures, 2-column revtex4 format. Revision has change of title, a figure added, and minor changes in response to referee comment

    Single Transverse-Spin Asymmetries at Large-x

    Get PDF
    The large-xx behavior of the transverse-momentum dependent quark distributions is analyzed in the factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-odd quark Sivers function which is responsible for the single transverse-spin asymmetries in various semi-inclusive hard processes. By examining the dominant hard gluon exchange Feynman diagrams, and using the resulting power counting rule, we find that the Sivers function has power behavior (1x)4(1-x)^4 at x1x \to 1, which is one power of (1x)(1-x) suppressed relative to the unpolarized quark distribution. These power-counting results provide important guidelines for the parameterization of quark distributions and quark-gluon correlations.Comment: 20 pages, 4 figure
    corecore