Jagla ramp particles, interacting through a ramp potential with two
characteristic length scales, are known to show in their bulk phase
thermodynamic and dynamic anomalies, similar to what is found in water. Jagla
particles also exhibit a line of phase transitions separating a low density
liquid phase and a high density liquid phase, terminating in a liquid-liquid
critical point in a region of the phase diagram that can be studied by
simulations. Employing molecular dynamics computer simulations, we study the
thermodynamics and the dynamics of solutions of hard spheres (HS) in a solvent
formed by Jagla ramp particles. We consider the cases of HS mole fraction x =
0.10, 0.15 and 0.20, and also the case x = 0.50 (a 1:1 mixture of HS and Jagla
particles). We find a liquid-liquid critical point, up to the highest HS mole
fraction; its position shifts to higher pressures and lower temperatures upon
increasing x. We also find that the diffusion coefficient anomalies appear to
be preserved for all the mole fractions studied.Comment: 8 pages, 7 figures, 1 table. In press (Phys. Rev. E