26 research outputs found
Regional Initiatives in Support of Surveillance in East Africa: The East Africa Integrated Disease Surveillance Network (EAIDSNet) Experience.
The East African Integrated Disease Surveillance Network (EAIDSNet) was formed in response to a growing frequency of cross-border malaria outbreaks in the 1990s and a growing recognition that fragmented disease interventions, coupled with weak laboratory capacity, were making it difficult to respond in a timely manner to the outbreaks of malaria and other infectious diseases. The East Africa Community (EAC) partner states, with financial support from the Rockefeller Foundation, established EAIDSNet in 2000 to develop and strengthen the communication channels necessary for integrated cross-border disease surveillance and control efforts. The objective of this paper is to review the regional EAIDSNet initiative and highlight achievements and challenges in its implementation. Major accomplishments of EAIDSNet include influencing the establishment of a Department of Health within the EAC Secretariat to support a regional health agenda; successfully completing a regional field simulation exercise in pandemic influenza preparedness; and piloting a web-based portal for linking animal and human health disease surveillance. The strategic direction of EAIDSNet was shaped, in part, by lessons learned following a visit to the more established Mekong Basin Disease Surveillance (MBDS) regional network. Looking to the future, EAIDSNet is collaborating with the East, Central and Southern Africa Health Community (ECSA-HC), EAC partner states, and the World Health Organization to implement the World Bank-funded East Africa Public Health Laboratory Networking Project (EAPHLNP). The network has also begun lobbying East African countries for funding to support EAIDSNet activities
Glassy behavior of a homopolymer from molecular dynamics simulations
We study at- and out-of-equilibrium dynamics of a single homopolymer chain at
low temperature using molecular dynamics simulations. The main quantities of
interest are the average root mean square displacement of the monomers below
the theta point, and the structure factor, as a function of time. The
observation of these quantities show a close resemblance to those measured in
structural glasses and suggest that the polymer chain in its low temperature
phase is in a glassy phase, with its dynamics dominated by traps. In
equilibrium, at low temperature, we observe the trapping of the monomers and a
slowing down of the overall motion of the polymer as well as non-exponential
relaxation of the structure factor. In out-of-equilibrium, at low temperatures,
we compute the two-time quantities and observe breaking of ergodicity in a
range of waiting times, with the onset of aging.Comment: 11 pages, 4 figure
Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations
We study the distributions of traveling length l and minimal traveling time t
through two-dimensional percolation porous media characterized by long-range
spatial correlations. We model the dynamics of fluid displacement by the
convective movement of tracer particles driven by a pressure difference between
two fixed sites (''wells'') separated by Euclidean distance r. For strongly
correlated pore networks at criticality, we find that the probability
distribution functions P(l) and P(t) follow the same scaling Ansatz originally
proposed for the uncorrelated case, but with quite different scaling exponents.
We relate these changes in dynamical behavior to the main morphological
difference between correlated and uncorrelated clusters, namely, the
compactness of their backbones. Our simulations reveal that the dynamical
scaling exponents for correlated geometries take values intermediate between
the uncorrelated and homogeneous limiting cases
Discrete molecular dynamics simulations of peptide aggregation
We study the aggregation of peptides using the discrete molecular dynamics
simulations. At temperatures above the alpha-helix melting temperature of a
single peptide, the model peptides aggregate into a multi-layer parallel
beta-sheet structure. This structure has an inter-strand distance of 0.48 nm
and an inter-sheet distance of 1.0 nm, which agree with experimental
observations. In this model, the hydrogen bond interactions give rise to the
inter-strand spacing in beta-sheets, while the Go interactions among side
chains make beta-strands parallel to each other and allow beta-sheets to pack
into layers. The aggregates also contain free edges which may allow for further
aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure
Multi-triangulations as complexes of star polygons
Maximal -crossing-free graphs on a planar point set in convex
position, that is, -triangulations, have received attention in recent
literature, with motivation coming from several interpretations of them.
We introduce a new way of looking at -triangulations, namely as complexes
of star polygons. With this tool we give new, direct, proofs of the fundamental
properties of -triangulations, as well as some new results. This
interpretation also opens-up new avenues of research, that we briefly explore
in the last section.Comment: 40 pages, 24 figures; added references, update Section
Coastal morphological changes in the Red River Delta under increasing natural and anthropic stresses
Giant suppression of shot noise in double barrier resonant diode: a signature of coherent transport
Shot noise suppression in double barrier resonant tunnelling diodes with a Fano factor well below the value of 0.5 is theoretically predicted. This giant suppression is found to be a signature of coherent transport regime and can occur at zero temperature as a consequence of the Pauli principle or at sufficiently high temperatures above 77 K as a consequence of a long-range Coulomb interaction. These predictions are in agreement with experimental data