8,171 research outputs found

    A hermeneutic inquiry into user-created personas in different Namibian locales

    Get PDF
    Persona is a tool broadly used in technology design to support communicational interactions between designers and users. Different Persona types and methods have evolved mostly in the Global North, and been partially deployed in the Global South every so often in its original User-Centred Design methodology. We postulate persona conceptualizations are expected to differ across cultures. We demonstrate this with an exploratory-case study on user-created persona co-designed with four Namibian ethnic groups: ovaHerero, Ovambo, ovaHimba and Khoisan. We follow a hermeneutic inquiry approach to discern cultural nuances from diverse human conducts. Findings reveal diverse self-representations whereby for each ethnic group results emerge in unalike fashions, viewpoints, recounts and storylines. This paper ultimately argues User-Created Persona as a potentially valid approach for pursuing cross-cultural depictions of personas that communicate cultural features and user experiences paramount to designing acceptable and gratifying technologies in dissimilar locales

    Critical exponents and the correlation length in the charge exchange manganite spin glass Eu_{0.5}Ba_{0.5}MnO_{3}

    Full text link
    The critical regime of the charge exchange (CE) manganite spin glass Eu_{0.5}Ba_{0.5}MnO_{3} is investigated using linear and non linear magnetic susceptibility and the divergence of the third ordered susceptibility (chi{_3}) signifying the onset of a conventional freezing transition is experimentally demonstrated. The divergence in chi{_3}, dynamical scaling of the linear susceptibility and relevant scaling equations are used to determine the critical exponents associated with this freezing transition, the values of which match well with the 3D Ising universality class. Magnetic field dependence of the spin glass response function is used to estimate the spin correlation length which is seen to be larger than the charge/orbital correlation length reported in this system.Comment: 4 pages, 4 Figure

    Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale

    Full text link
    In conventional treatments, predictions from fixed-order perturbative QCD calculations cannot be fixed with certainty due to ambiguities in the choice of the renormalization scale as well as the renormalization scheme. In this paper we present a general discussion of the constraints of the renormalization group (RG) invariance on the choice of the renormalization scale. We adopt the RG based equations, which incorporate the scheme parameters, for a general exposition of RG invariance, since they simultaneously express the invariance of physical observables under both the variation of the renormalization scale and the renormalization scheme parameters. We then discuss the self-consistency requirements of the RG, such as reflexivity, symmetry, and transitivity, which must be satisfied by the scale-setting method. The Principle of Minimal Sensitivity (PMS) requires the slope of the approximant of an observable to vanish at the renormalization point. This criterion provides a scheme-independent estimation, but it violates the symmetry and transitivity properties of the RG and does not reproduce the Gell-Mann-Low scale for QED observables. The Principle of Maximum Conformality (PMC) satisfies all of the deductions of the RG invariance - reflectivity, symmetry, and transitivity. Using the PMC, all non-conformal {βiR}\{\beta^{\cal R}_i\}-terms (R{\cal R} stands for an arbitrary renormalization scheme) in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC scales and the resulting finite-order PMC predictions are both to high accuracy independent of the choice of initial renormalization scale, consistent with RG invariance. [...More in the text...]Comment: 15 pages, 4 figures. References updated. To be published in Phys.Rev.

    Application of the Principle of Maximum Conformality to Top-Pair Production

    Full text link
    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale μr\mu_r. For example, by using the conventional way of setting μr[mt/2,2mt]\mu_r \in [m_t/2,2m_t], one obtains the total ttˉt \bar{t} production cross-section σttˉ\sigma_{t \bar{t}} with the uncertainty \Delta \sigma_{t \bar{t}}/\sigma_{t \bar{t}}\sim ({}^{+3%}_{-4%}) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. In this paper we apply PMC scale-setting to predict the ttˉt \bar t cross-section σttˉ\sigma_{t\bar{t}} at the Tevatron and LHC colliders. It is found that σttˉ\sigma_{t\bar{t}} remains almost unchanged by varying μrinit\mu^{\rm init}_r within the region of [mt/4,4mt][m_t/4,4m_t]. The convergence of the expansion series is greatly improved. For the (qqˉ)(q\bar{q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small xx-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)(gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy s\sqrt{s}, but it is still smaller than mtm_t for s1\sqrt{s}\lesssim 1 TeV, and the resulting NLO cross-section is increased by 20\sim 20%. As a result, a larger σttˉ\sigma_{t\bar{t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting mt=172.9±1.1m_t=172.9\pm 1.1 GeV, we predict σTevatron,  1.96TeV=7.6260.257+0.265\sigma_{\rm Tevatron,\;1.96\,TeV} = 7.626^{+0.265}_{-0.257} pb, σLHC,  7TeV=171.85.6+5.8\sigma_{\rm LHC,\;7\,TeV} = 171.8^{+5.8}_{-5.6} pb and σLHC,  14TeV=941.326.5+28.4\sigma_{\rm LHC,\;14\,TeV} = 941.3^{+28.4}_{-26.5} pb. [full abstract can be found in the paper.]Comment: 15 pages, 11 figures, 5 tables. Fig.(9) is correcte

    Effect of water-wall interaction potential on the properties of nanoconfined water

    Full text link
    Much of the understanding of bulk liquids has progressed through study of the limiting case in which molecules interact via purely repulsive forces, such as a hard-core potential. In the same spirit, we report progress on the understanding of confined water by examining the behavior of water-like molecules interacting with planar walls via purely repulsive forces and compare our results with those obtained for Lennard-Jones (LJ) interactions between the molecules and the walls. Specifically, we perform molecular dynamics simulations of 512 water-like molecules which are confined between two smooth planar walls that are separated by 1.1 nm. At this separation, there are either two or three molecular layers of water, depending on density. We study two different forms of repulsive confinements, when the interaction potential between water-wall is (i) 1/r91/r^9 and (ii) WCA-like repulsive potential. We find that the thermodynamic, dynamic and structural properties of the liquid in purely repulsive confinements qualitatively match those for a system with a pure LJ attraction to the wall. In previous studies that include attractions, freezing into monolayer or trilayer ice was seen for this wall separation. Using the same separation as these previous studies, we find that the crystal state is not stable with 1/r91/r^9 repulsive walls but is stable with WCA-like repulsive confinement. However, by carefully adjusting the separation of the plates with 1/r91/r^9 repulsive interactions so that the effective space available to the molecules is the same as that for LJ confinement, we find that the same crystal phases are stable. This result emphasizes the importance of comparing systems only using the same effective confinement, which may differ from the geometric separation of the confining surfaces.Comment: 20 pages, 10 figure

    Probing the field-induced variation of the chemical potential in Bi(2)Sr(2)CaCu(2)O(y) via the magneto-thermopower measurements

    Full text link
    Approximating the shape of the measured in Bi2Sr2CaCu2OyBi_2Sr_2CaCu_2O_y magneto-thermopower (TEP) ΔS(T,H)\Delta S(T,H) by asymmetric linear triangle of the form ΔS(T,H)Sp(H)±B±(H)(TcT)\Delta S(T,H)\simeq S_p(H)\pm B^{\pm}(H)(T_c-T) with positive B(H)B ^{-}(H) and B+(H)B ^{+}(H) defined below and above TcT_c, we observe that B+(H)2B(H)B ^{+}(H)\simeq 2B ^{-}(H). In order to account for this asymmetry, we explicitly introduce the field-dependent chemical potential of holes μ(H)\mu (H) into the Ginzburg-Landau theory and calculate both an average ΔSav(T,H)\Delta S_{av}(T,H) and fluctuation ΔSfl(T,H)\Delta S_{fl}(T,H) contributions to the total magneto-TEP ΔS(T,H)\Delta S(T,H). As a result, we find a rather simple relationship between the field-induced variation of the chemical potential in this material and the above-mentioned magneto-TEP data around TcT_c, viz. Δμ(H)Sp(H)\Delta \mu (H)\propto S_p(H).Comment: REVTEX (epsf), 4 pages, 2 PS figures; to be published in JET

    On the role of continuum-driven eruptions in the evolution of very massive stars and Population III stars

    Get PDF
    We suggest that the mass lost during the evolution of very massive stars may be dominated by optically thick, continuum-driven outbursts or explosions, instead of by steady line-driven winds. In order for a massive star to become a WR star, it must shed its H envelope, but new estimates of the effects of clumping in winds indicate that line driving is vastly insufficient. We discuss massive stars above roughly 40-50 Msun, for which the best alternative is mass loss during brief eruptions of luminous blue variables (LBVs). Our clearest example of this phenomenon is the 19th century outburst of eta Car, when the star shed 12-20 Msun or more in less than a decade. Other examples are circumstellar nebulae of LBVs, extragalactic eta Car analogs (``supernova impostors''), and massive shells around SNe and GRBs. We do not yet fully understand what triggers LBV outbursts, but they occur nonetheless, and present a fundamental mystery in stellar astrophysics. Since line opacity from metals becomes too saturated, the extreme mass loss probably arises from a continuum-driven wind or a hydrodynamic explosion, both of which are insensitive to metallicity. As such, eruptive mass loss could have played a pivotal role in the evolution and fate of massive metal-poor stars in the early universe. If they occur in these Population III stars, such eruptions would profoundly affect the chemical yield and types of remnants from early SNe and hypernovae.Comment: 4 pages, 1 figure, accepted by ApJ Letter

    Single Transverse-Spin Asymmetries at Large-x

    Get PDF
    The large-xx behavior of the transverse-momentum dependent quark distributions is analyzed in the factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-odd quark Sivers function which is responsible for the single transverse-spin asymmetries in various semi-inclusive hard processes. By examining the dominant hard gluon exchange Feynman diagrams, and using the resulting power counting rule, we find that the Sivers function has power behavior (1x)4(1-x)^4 at x1x \to 1, which is one power of (1x)(1-x) suppressed relative to the unpolarized quark distribution. These power-counting results provide important guidelines for the parameterization of quark distributions and quark-gluon correlations.Comment: 20 pages, 4 figure

    Lattice Point Generating Functions and Symmetric Cones

    Full text link
    We show that a recent identity of Beck-Gessel-Lee-Savage on the generating function of symmetrically contrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out the specific cases of a symmetry group of type A (previously known) and types B and D (new). We obtain several applications of the special cases in type B, including identities involving permutation statistics and lecture hall partitions.Comment: 19 page
    corecore