171 research outputs found

    Effects of Composite Restorations on the Periodontal Membrane in Monkeys

    Full text link
    We evaluated the histopathological response of the periodontal membrane to intentionolly-replanted teeth carrying composite (experimental) and silver amalgam (control) restorations in the middle third of each root. The study revealed that the amalgam produced, in the periodontal tissues, an initial localized inflammation that subsided with the subsequent formation of a fibrous capsule. However, the periodontal membrane adjacent to the composite resin restorations demonstrated chronic inflammation. It was concluded that the composite evoked chronic inflammatory responses of the periodontal tissues in monkeys.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67994/2/10.1177_00220345830620011801.pd

    Comparison of different strategies in parathyroid scintigraphy imaging in the setting of multi-gland hyperparathyroidism [abstract]

    Get PDF
    Medical records of 140 patients, diagnosed with multigland primary, secondary or tertiary hyperparathyroidism were reviewed. Of those, 56 patients had complete preoperative parathyroid scintigraphy with subsequent surgical resection of abnormal glands. Parathyroid scintigraphy at our institution utilizes 99mTc sestamibi (MIBI) and 123I, and consists of early and delayed pinhole MIBI images of the neck, MIBI-123I subtraction imaging, and MIBI single photon computed tomography (SPECT). Four experienced nuclear medicine physician, without knowledge of clinical or laboratory results or final diagnosis, reviewed seven different imaging variations in separate sessions. The imaging variations were early MIBI only (EARLY), delayed MIBI only (DELAYED), comparison of early and delayed MIBI (E-D), subtraction (SUB), all planar (PLANAR), SPECT only (SPECT), and all images (ALL). The location of the abnormal parathyroid glands was recorded and compared with the embryologic designation of the abnormal glands assigned at the time of surgery

    Comparison of different strategies in parathyroid scintigraphy imaging [abstract]

    Get PDF
    To retrospectively compare the various scintigraphic methods to discover the most accurate protocol for preoperative localization of single-gland disease, medical records of 710 patients, diagnosed with primary were reviewed. 293 patients had complete preoperative parathyroid scintigraphy with subsequent surgical resection of a single abnormal gland. Parathyroid scintigraphy at our institution utilizes 99mTc sestamibi (MIBI) and 123I, and consists of early and delayed pinhole MIBI images of the neck, including MIBI-123I subtraction imaging, as well as MIBI single photon emission computed tomography (SPECT) of the neck and chest. Four experienced nuclear medicine physicians, without knowledge of clinical or laboratory results or final diagnosis, reviewed seven different imaging variations in separate sessions. The imaging variations were early MIBI only (EARLY), delayed MIBI only (DELAYED), comparison of early and delayed MIBI (E-D), subtraction (SUB), all planar (PLANAR), SPECT only (SPECT), and all images (ALL)

    Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d\u27Or Lake system

    Get PDF
    Sea ice is an important control on gas exchange and primary production in polar regions. We measured net oxygen production (NOP) and gross oxygen production (GOP) using near-continuous measurements of the O2∕Ar gas ratio and discrete measurements of the triple isotopic composition of O2, during the transition from ice-covered to ice-free conditions, in Whycocomagh Bay, an estuary in the Bras d\u27Or Lake system in Nova Scotia, Canada. The volumetric gross oxygen production was 5.4+2.8-1.6 role= presentation \u3e5.4+2.8−1.6 mmol O2 m−3 d−1, similar at the beginning and end of the time series, and likely peaked at the end of the ice melt period. Net oxygen production displayed more temporal variability and the system was on average net autotrophic during ice melt and net heterotrophic following the ice melt. We performed the first field-based dual tracer release experiment in ice-covered water to quantify air–water gas exchange. The gas transfer velocity at \u3e90 % ice cover was 6 % of the rate for nearly ice-free conditions. Published studies have shown a wide range of results for gas transfer velocity in the presence of ice, and this study indicates that gas transfer through ice is much slower than the rate of gas transfer through open water. The results also indicate that both primary producers and heterotrophs are active in Whycocomagh Bay during spring while it is covered in ice

    Diatom Hotspots Driven by Western Boundary Current Instability

    Get PDF
    Abstract Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems

    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds

    Get PDF
    Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here, we examine down-core 14C profiles of higher plant leaf wax-derived fatty acids isolated from high fidelity sedimentary sequences spanning the so-called “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Autoimmune and infectious skin diseases that target desmogleins

    Get PDF
    Desmosomes are intercellular adhesive junctions of epithelial cells that contain two major transmembrane components, the desmogleins (Dsg) and desmocollins (Dsc), which are cadherin-type cell–cell adhesion molecules and are anchored to intermediate filaments of keratin through interactions with plakoglobin and desmoplakin. Desmosomes play an important role in maintaining the proper structure and barrier function of the epidermis and mucous epithelia. Four Dsg isoforms have been identified to date, Dsg1–Dsg4, and are involved in several skin and heart diseases. Dsg1 and Dsg3 are the two major Dsg isoforms in the skin and mucous membranes, and are targeted by IgG autoantibodies in pemphigus, an autoimmune disease of the skin and mucous membranes. Dsg1 is also targeted by exfoliative toxin (ET) released by Staphylococcus aureus in the infectious skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). ET is a unique serine protease that shows lock and key specificity to Dsg1. Dsg2 is expressed in all tissues possessing desmosomes, including simple epithelia and myocardia, and mutations in this gene are responsible for arrhythmogenic right ventricular cardiomyopathy/dysplasia. Dsg4 plays an important adhesive role mainly in hair follicles, and Dsg4 mutations cause abnormal hair development. Recently, an active disease model for pemphigus was generated by a unique approach using autoantigen-deficient mice that do not acquire tolerance against the defective autoantigen. Adoptive transfer of Dsg3−/− lymphocytes into mice expressing Dsg3 induces stable anti-Dsg3 IgG production with development of the pemphigus phenotype. This mouse model is a valuable tool with which to investigate immunological mechanisms of harmful IgG autoantibody production in pemphigus. Further investigation of desmoglein molecules will continue to provide insight into the unsolved pathophysiological mechanisms of diseases and aid in the development of novel therapeutic strategies with minimal side effects

    US SOLAS Science Report

    Get PDF
    The article of record may be found at https://doi.org/10.1575/1912/27821The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)
    corecore