527 research outputs found

    Further developments in the conflation of CFD and building simulation

    Get PDF
    To provide practitioners with the means to tackle problems related to poor indoor environments, building simulation and computational fluid dynamics can usefully be integrated within a single computational framework. This paper describes the outcomes from a research project sponsored by the European Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model and describes the method used to integrate the thermal and flow domains

    Experimental and numerical study of local mean age of air

    Get PDF
    This paper presents the results from the experimental and numerical study of a room with mixing ventilation, focused on the local mean age of air (LMA). The measurements were performed using the tracer gas concentration decay method. The numerical predictions were obtained from the computational fluid dynamics (CFD) module of the latest version of the ESP-r software

    Spectrofluorimetric and HPLC Determination of Morin in Human Serum

    Get PDF
    Morin is a flavonol antioxidant. In ethanol-water mixtures (70 wt% of ethanol) it reacts with Al3+ to give Al(Morin)(2) in the pH range 3-6. The conditional stability constant of this complex at 298 K was found to be log beta(2) = 16.96 +/- 0.02 at pH 4.40. The complex shows strong fluorescence emission at 500 nm upon excitation at 410 nm. The fluorescence intensity is pH dependent with maximum emission at pH 4.40. Since the complexation reaction enhances the fluorescence of morin, this property was used for the determination of morin in human serum. A linear dependence of the intensity of fluorescence of the complex on the concentration of morin was obtained in morin concentration range from 1.5-30.5 ng mL(-1), relative standard error of measurements was 1.4%. The LOD was 0.02 ng mL(-1) while LOQ was 1.0 ng mL(-1). Serum concentration of morin was also determined using HPLC as a reference method. A C-18 Hypersil Gold AQ column was used with acetonitrile-0.1% v/v phosphoric acid (30:70% v/v) as the mobile phase at 1.0 mL min(-1) flow rate and UV detection at 250 nm. Acceptable relative standard errors (less than 5%) between determinations obtained by the two methods indicate that the fluorescence method is reliable

    Attosecond streaking of photoelectron emission from disordered solids

    Full text link
    Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface

    Cryogenic heat exchangers for process cooling and renewable energy storage: A review

    Get PDF
    © 2019 The cryogenic industry has experienced remarkable expansion in recent years. Cryogenic technologies are commonly used for industrial processes, such as air separation and natural gas liquefaction. Another recently proposed and tested cryogenic application is Liquid Air Energy Storage (LAES). This technology allows for large-scale long-duration storage of renewable energy in the power grid. One major advantage over alternative storage techniques is the possibility of efficient integration with important industrial processes, e.g., refrigerated warehousing of food and pharmaceuticals. Heat exchangers are among the most important components determining the energy efficiency of cryogenic systems. They also constitute the necessary interface between a LAES system and the industrial process utilizing the available cooling effect. The present review aims to familiarise energy professionals and stakeholders with the latest achievements, innovations, and trends in the field of cryogenic heat exchangers, with particular emphasis on their applications to LAES systems employing renewable energy resources. Important innovations in coil-wound and plate-fin heat exchanger design and simulation methods are reviewed among others, while special attention is given to regenerators as a prospective component of cryogenic energy storage systems. This review also reveals that the geographical spread of research and development activities has recently expanded from well-established centers of excellence to rather active emerging establishments around the globe

    Ab initio and nuclear inelastic scattering studies of Fe3_3Si/GaAs heterostructures

    Full text link
    The structure and dynamical properties of the Fe3_3Si/GaAs(001) interface are investigated by density functional theory and nuclear inelastic scattering measurements. The stability of four different atomic configurations of the Fe3_3Si/GaAs multilayers is analyzed by calculating the formation energies and phonon dispersion curves. The differences in charge density, magnetization, and electronic density of states between the configurations are examined. Our calculations unveil that magnetic moments of the Fe atoms tend to align in a plane parallel to the interface, along the [110] direction of the Fe3_3Si crystallographic unit cell. In some configurations, the spin polarization of interface layers is larger than that of bulk Fe3_3Si. The effect of the interface on element-specific and layer-resolved phonon density of states is discussed. The Fe-partial phonon density of states measured for the Fe3_3Si layer thickness of three monolayers is compared with theoretical results obtained for each interface atomic configuration. The best agreement is found for one of the configurations with a mixed Fe-Si interface layer, which reproduces the anomalous enhancement of the phonon density of states below 10 meVComment: 14 pages, 9 figures, 4 table

    Simultaneous Absolute Timing of the Crab Pulsar at Radio and Optical Wavelengths

    Full text link
    The Crab pulsar emits across a large part of the electromagnetic spectrum. Determining the time delay between the emission at different wavelengths will allow to better constrain the site and mechanism of the emission. We have simultaneously observed the Crab Pulsar in the optical with S-Cam, an instrument based on Superconducting Tunneling Junctions (STJs) with μ\mus time resolution and at 2 GHz using the Nan\c{c}ay radio telescope with an instrument doing coherent dedispersion and able to record giant pulses data. We have studied the delay between the radio and optical pulse using simultaneously obtained data therefore reducing possible uncertainties present in previous observations. We determined the arrival times of the (mean) optical and radio pulse and compared them using the tempo2 software package. We present the most accurate value for the optical-radio lag of 255 ±\pm 21 μ\mus and suggest the likelihood of a spectral dependence to the excess optical emission asociated with giant radio pulses.Comment: 8 pages; accepted for publication in Astronomy and Astrophysic
    corecore