12 research outputs found

    Nanostructured Manganite Films Grown by Pulsed Injection MOCVD: Tuning Low- and High-Field Magnetoresistive Properties for Sensors Applications

    No full text
    The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single crystal quartz, polycrystalline Al2O3, and amorphous Si/SiO2 substrates were nanostructured with column-shaped crystallites spread perpendicular to the film plane. It was found that morphology, microstructure, and magnetoresistive properties of the films strongly depend on the substrate used. The low-field MR at low temperatures (25 K) showed twice higher values (−31% at 0.7 T) for LSMO/quartz in comparison to films grown on the other substrates (−15%). This value is high in comparison to results published in literature for manganite films prepared without additional insulating oxides. The high-field MR measured up to 20 T at 80 K was also the highest for LSMO/quartz films (−56%) and demonstrated the highest sensitivity S = 0.28 V/T at B = 0.25 T (voltage supply 2.5 V), which is promising for magnetic sensor applications. It was demonstrated that Mn excess Mn/(La + Sr) = 1.21 increases the metal-insulator transition temperature of the films up to 285 K, allowing the increase in the operation temperature of magnetic sensors up to 363 K. These results allow us to fabricate CMR sensors with predetermined parameters in a wide range of magnetic fields and temperatures

    A Simple Method for Stator Inductance and Resistance Estimation for PMSM at Standstill

    No full text
    An accurate stator resistance and inductance are necessary for high-performance permanent magnet synchronous motor (PMSM) control. The stator resistance and inductance can be estimated during motor standstill operation. This study proposes a standstill estimation method for the determination of dq-axis inductances and resistance of a PMSM drive system fed by a conventional voltage source inverter (VSI). The proposed method estimates both inductance and the rotor's position using the same algorithm, and knowledge of its initial position is not required. The d- and q-axis inductances were estimated by applying three short-time voltage pulses and measuring phase current peak values. The stator's resistance is estimated by monitoring the exponential decay process of the direct axis current. The method was verified by simulation and experiments conducted on two different PM synchronous motors. A good agreement of simulation and experimental results was obtained. Moreover, the proposed method is relatively simple and can identify stator resistance and inductance at any motor load condition. Compared to the existing parameter estimation strategies, the proposed estimation scheme has a relatively faster estimation time. Additionally, it is shown that the method accounts for the dead-time effect as well

    The Application of a CMR-B-Scalar Sensor for the Investigation of the Electromagnetic Acceleration of Type II Superconductors

    No full text
    In this paper, we investigated the behavior of a type II superconducting armature when accelerated by a pulsed magnetic field generated by a single-stage pancake coil. While conducting this investigation, we performed a numerical finite element simulation and an experimental study of the magnetic field dynamics at the edge of the pancake coil when the payload was a superconducting disc made from YBa2Cu3O7−x, cooled down to 77 K. The magnetic field measurements were performed using a CMR-B-scalar sensor, which was able to measure the absolute magnitude of the magnetic field and was specifically manufactured in order to increase the sensor’s sensitivity up to 500 mT. It was obtained that type II superconducting armatures can outperform normal metals when the launch conditions are tailored to their electromagnetic properties

    Microwave-Assisted Solvothermal Synthesis of Nanocrystallite-Derived Magnetite Spheres

    No full text
    The synthesis of magnetic particles triggers the interest of many scientists due to their relevant properties and wide range of applications in the catalysis, nanomedicine, biosensing and magnetic separation fields. A fast synthesis of iron oxide magnetic particles using an eco-friendly and facile microwave-assisted solvothermal method is presented in this study. Submicron Fe3O4 spheres were prepared using FeCl3 as an iron source, ethylene glycol as a solvent and reductor and sodium acetate as a precipitating and nucleating agent. The influence of the presence of polyethylene glycol as an additional reductor and heat absorbent was also evaluated. We reduce the synthesis time to 1 min by increasing the reaction temperature using the microwave-assisted solvothermal synthesis method under pressure or by adding PEG at lower temperatures. The obtained magnetite spheres are 200–300 nm in size and are composed of 10–30 nm sized crystallites. The synthesized particles were investigated using the XRD, TGA, pulsed-field magnetometry, Raman and FTIR methods. It was determined that adding PEG results in spheres with mixed magnetite and maghemite compositions, and the synthesis time increases the size of the crystallites. The presented results provide insights into the microwave-assisted solvothermal synthesis method and ensure a fast route to obtaining spherical magnetic particles composed of different sized nanocrystallites

    Compact Square-Wave Pulse Electroporator with Controlled Electroporation Efficiency and Cell Viability

    No full text
    The design and development of a compact square-wave pulse generator for the electroporation of biological cells is presented. This electroporator can generate square-wave pulses with durations from 3 μs up to 10 ms, voltage amplitudes up to 3500 V, and currents up to 250 A. The quantity of the accumulated energy is optimized by means of a variable capacitor bank. The pulse forming unit design uses a crowbar circuit, which gives better control of the pulse form and its duration, independent of the load impedance. In such cases, the square-wave pulse form ensures better control of electroporation efficiency by choosing parameters determined in advance. The device has an integrated graphic LCD screen and measurement modules for the visualization of the current pulse, allowing for express control of the electroporation quality and does not require an external oscilloscope for current pulse recording. This electroporator was tested on suspensions of Saccharomyces cerevisiae yeast cells, during which, it was demonstrated that the application of such square-wave pulses ensured better control of the electroporation efficiency and cell viability after treatment using the pulsed electric field (PEF)
    corecore