3,370 research outputs found

    The effect of injector-element scale on the mixing and combustion of nitrogen tetroxide-hydrazine propellants

    Get PDF
    Injector-element physical size effect on mixing and combustion of nitrogen tetroxide-hydrazine propellant

    Origin of charge density at LaAlO3-on-SrTiO3 hetero-interfaces; possibility of intrinsic doping

    Get PDF
    As discovered by Ohtomo et al., a large sheet charge density with high mobility exists at the interface between SrTiO3 and LaAlO3. Based on transport, spectroscopic and oxygen-annealing experiments, we conclude that extrinsic defects in the form of oxygen vacancies introduced by the pulsed laser deposition process used by all researchers to date to make these samples is the source of the large carrier densities. Annealing experiments show a limiting carrier density. We also present a model that explains the high mobility based on carrier redistribution due to an increased dielectric constant.Comment: 14 pages, 3 figures, 1 table; accepted for publication in Phys. Rev. Lett

    IDCS J1426.5+3508: The Most Massive Galaxy Cluster at z>1.5z > 1.5

    Full text link
    We present a deep (100 ks) Chandra observation of IDCS J1426.5+3508, a spectroscopically confirmed, infrared-selected galaxy cluster at z=1.75z = 1.75. This cluster is the most massive galaxy cluster currently known at z>1.5z > 1.5, based on existing Sunyaev-Zel'dovich (SZ) and gravitational lensing detections. We confirm this high mass via a variety of X-ray scaling relations, including TXT_X-M, fgf_g-M, YXY_X-M and LXL_X-M, finding a tight distribution of masses from these different methods, spanning M500_{500} = 2.3-3.3 ×1014\times 10^{14} M⊙_{\odot}, with the low-scatter YXY_X-based mass M500,YX=2.6−0.5+1.5×1014M_{500,Y_X} = 2.6^{+1.5}_{-0.5} \times 10^{14} M⊙_\odot. IDCS J1426.5+3508 is currently the only cluster at z>1.5z > 1.5 for which X-ray, SZ and gravitational lensing mass estimates exist, and these are in remarkably good agreement. We find a relatively tight distribution of the gas-to-total mass ratio, employing total masses from all of the aforementioned indicators, with values ranging from fgas,500f_{gas,500} = 0.087-0.12. We do not detect metals in the intracluster medium (ICM) of this system, placing a 2σ\sigma upper limit of Z(r<R500)<0.18Z⊙Z(r < R_{500}) < 0.18 Z_{\odot}. This upper limit on the metallicity suggests that this system may still be in the process of enriching its ICM. The cluster has a dense, low-entropy core, offset by ∼\sim30 kpc from the X-ray centroid, which makes it one of the few "cool core" clusters discovered at z>1z > 1, and the first known cool core cluster at z>1.2z > 1.2. The offset of this core from the large-scale centroid suggests that this cluster has had a relatively recent (≲\lesssim500 Myr) merger/interaction with another massive system.Comment: Minor changes to match accepted version, results unchanged; ApJ in pres

    Top-Dress Your Legume Meadow

    Get PDF
    Top-dressing phosphate or potash fertilizers isn\u27t a substitute for good fertilizer practices at seeding time, but in many cases it will pay dividends

    The Crystal Structure of a Photodimer of 1,4-Epoxy-1,4-dihydronaphthalene

    Get PDF
    The crystal structure of a photodimer of l,4-epoxy-1,4-dihydronaphthalene, with empirical formula C_(20)H_(16)O_2, has been determined by the application of direct methods. Three-dimensional data were collected on a Datex-automated General Electric diffractometer to a minimum spacing of 1·0 Å. The coordinates of all atoms in the molecule, the isotropic temperature factors for the hydrogen atoms, and the anisotropic temperature factors for the other atoms were refined by the method of least squares. The final R index was 0·027. The crystals are orthorhombic, space group Pcɑ2_1 with ɑ = 16-52, b = 7·975 and c= 10·58 Å. Of four possible configurations, the molecule of the photodimer has the exotrans-exo configuration. Despite the lack of a center of symmetry in the space group, the molecule is centrosymmetric almost within experimental error

    Discovery of a Radio-loud/Radio-quiet Binary Quasar

    Get PDF
    We report the discovery of a small separation quasar pair (z=0.586, O=18.4, 19.2, sep. = 2.3 arcsec) associated with the radio source FIRST J164311.3+315618 (S_1400 = 120 mJy). The spectrum of the brighter quasar (A) has a much stronger narrow emission-line spectrum than the other (B), and also stronger Balmer lines relative to the continuum. The continuum ratio of the spectra is flat in the blue at about 2.1, but falls to 1.5 at longer wavelengths. A K' image shows two unresolved sources with a flux ratio of 1.3. The different colors appear to result from the contribution of the host galaxy of B, which is evident from Ca II and high-order Balmer absorption lines indicative of a substantial young stellar population. New 3.6 cm VLA observations show that the compact radio source is coincident with quasar A (B is only marginally detected). We rule out the lensing hypothesis because the optical flux ratio is A/B = 1.2 to 2, while the radio flux ratio is A/B > 40, and conclude that this system is a binary. Moreover, the radio-loud quasar is a compact steep spectrum source. FIRST J164311.3+315618A, B is the lowest redshift and smallest separation binary quasar yet identified.Comment: 8 pages, 3 figures, to appear in Astrophysical Journal Letter
    • …
    corecore