6 research outputs found

    Secular increase of the Astronomical Unit and perihelion precessions as tests of the Dvali-Gabadadze-Porrati multi-dimensional braneworld scenario

    Full text link
    An unexpected secular increase of the Astronomical Unit, the length scale of the Solar System, has recently been reported by three different research groups (Krasinsky and Brumberg, Pitjeva, Standish). The latest JPL measurements amount to 7+-2 m cy^-1. At present, there are no explanations able to accommodate such an observed phenomenon, neither in the realm of classical physics nor in the usual four-dimensional framework of the Einsteinian General Relativity. The Dvali-Gabadadze-Porrati braneworld scenario, which is a multi-dimensional model of gravity aimed to the explanation of the observed cosmic acceleration without dark energy, predicts, among other things, a perihelion secular shift, due to Lue and Starkman, of 5 10^-4 arcsec cy^-1 for all the planets of the Solar System. It yields a variation of about 6 m cy^-1 for the Earth-Sun distance which is compatible at 1-sigma level with the observed rate of the Astronomical Unit. The recently measured corrections to the secular motions of the perihelia of the inner planets of the Solar System are in agreement, at 1-sigma level, with the predicted value of the Lue-Starkman effect for Mercury and Mars and at 2-sigma level for the Earth.Comment: LaTex2e, 7 pages, no figures, no tables, 13 references. Minor correction

    On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle

    Full text link
    In this paper we explicitly work out the secular perturbations induced on all the Keplerian orbital elements of a test body to order O(e^2) in the eccentricity e by the weak-field long-range modifications of the usual Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld model. The Gauss perturbative scheme is used. It turns out that the argument of pericentre and the mean anomaly are affected by secular rates which are independent of the semimajor axis of the orbit of the test particle. The first nonvaishing eccentricity-dependent corrections are of order O(e^2). For circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained. Some observational consequences are discussed for the Solar System planetary mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per century braneworld secular precession. According to recent data analysis over 92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds, while the braneworld effect over the same time span would be 1.159 milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per century systematic error due to the mismodelling in the Keplerian mean motion of Mars. A suitable linear combination of the mean longitudes of Mars and Venus may overcome this problem. The formal, 1-sigma obtainable observational accuracy would be \sim 7%. The systematic error due to the present-day uncertainties in the solar quadrupole mass moment, the Keplerian mean motions, the general relativistic Schwarzschild field and the asteroid ring would amount to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order corrections in eccentricity explicitly added. Typos corrected. References update

    On the perspectives of testing the Dvali-Gabadadze-Porrati gravity model with the outer planets of the Solar System

    Full text link
    The multidimensional braneworld gravity model by Dvali, Gabadadze and Porrati was primarily put forth to explain the observed acceleration of the expansion of the Universe without resorting to dark energy. One of the most intriguing features of such a model is that it also predicts small effects on the orbital motion of test particles which could be tested in such a way that local measurements at Solar System scales would allow to get information on the global properties of the Universe. Lue and Starkman derived a secular extra-perihelion \omega precession of 5\times 10^-4 arcseconds per century, while Iorio showed that the mean longitude \lambda is affected by a secular precession of about 10^-3 arcseconds per century. Such effects depend only on the eccentricities e of the orbits via second-order terms: they are, instead, independent of their semimajor axes a. Up to now, the observational efforts focused on the dynamics of the inner planets of the Solar System whose orbits are the best known via radar ranging. Since the competing Newtonian and Einsteinian effects like the precessions due to the solar quadrupole mass moment J2, the gravitoelectric and gravitomagnetic part of the equations of motion reduce with increasing distances, it would be possible to argue that an analysis of the orbital dynamics of the outer planets of the Solar System, with particular emphasis on Saturn because of the ongoing Cassini mission with its precision ranging instrumentation, could be helpful in evidencing the predicted new features of motion. In this note we investigate this possibility in view of the latest results in the planetary ephemeris field. Unfortunately, the current level of accuracy rules out this appealing possibility and it appears unlikely that Cassini and GAIA will ameliorate the situation.Comment: LaTex, 22 pages, 2 tables, 10 figures, 27 references. Reference [17] added, reference [26] updated, caption of figures changed, small change in section 1.

    Tidal Dynamics in Cosmological Spacetimes

    Get PDF
    We study the relative motion of nearby free test particles in cosmological spacetimes, such as the FLRW and LTB models. In particular, the influence of spatial inhomogeneities on local tidal accelerations is investigated. The implications of our results for the dynamics of the solar system are briefly discussed. That is, on the basis of the models studied in this paper, we estimate the tidal influence of the cosmic gravitational field on the orbit of the Earth around the Sun and show that the corresponding temporal rate of variation of the astronomical unit is negligibly small.Comment: 12 pages, no figures, REVTeX 4.0; appendix added, new references, and minor changes throughout; to appear in Classical and Quantum Gravity; v4: error in (A24) of Appendix A corrected, results and conclusions unchanged. We thank L. Iorio for pointing out the erro
    corecore