20 research outputs found

    Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide

    Get PDF
    Background: The sulfonylurea glibenclamide (Glib) abolishes the cardioprotective effect of ischemic preconditioning (IP), presumably by inhibiting mitochondrial KATP channel opening in myocytes. Glimepiride (Glim) is a new sulfonylurea reported to affect nonpancreatic KATP channels less than does Glib. We examined the effects of Glim on IP and on the protection afforded by diazoxide (Diaz), an opener of mitochondrial KATP channels. Methods and results: Rat hearts were Langendorff-perfused, subjected to 35 minutes of regional ischemia and 120 minutes of reperfusion, and assigned to 1 of the following treatment groups: (1) control; (2) IP of 2x 5 minutes each of global ischemia before lethal ischemia; or pretreatment with (3) 30 µmol/L Diaz, (4) 10 µmol/L Glim, (5) 10 µmol/L Glib, (6) IP+Glim, (7) IP+Glib, (8) Diaz+Glim, or (9) Diaz+Glib. IP limited infarct size (18.5±1% vs 43.7±3% in control, P<0.01) as did Diaz (22.2±4.7%, P<0.01). The protective actions of IP or Diaz were not abolished by Glim (18.5±3% in IP+Glim, 22.3±3% in Diaz+Glim; P<0.01 vs control). However, Glib abolished the infarct-limiting effects of IP and Diaz. Patch-clamp studies in isolated rat ventricular myocytes confirmed that both Glim and Glib (each at 1 µmol/L) blocked sarcolemmal KATP currents. However, in isolated cardiac mitochondria, Glim (10 µmol/L) failed to block the effects of KATP opening by GTP, in contrast to the blockade caused by Glib. Conclusions: Although it blocks sarcolemmal currents in rat cardiac myocytes, Glim does not block the beneficial effects of mitochondrial KATP channel opening in the isolated rat heart. These data may have significant implications for the treatment of type 2 diabetes in patients with ongoing ischemic heart disease

    External cadmium and internal calcium block of single calcium channels in smooth muscle cells from rabbit mesenteric artery

    Get PDF
    The patch clamp technique was used to record unitary currents through single calcium channels from smooth muscle cells of rabbit mesenteric arteries. The effects of external cadmium and cobalt and internal calcium, barium, cadmium, and magnesium on single channel currents were investigated with 80 mM barium as the charge carrier and Bay K 8644 to prolong openings. External cadmium shortened the mean open time of single Ca channels. Cadmium blocking and unblocking rate constants of 16.5 mM-1 ms-1 and 0.6 ms-1, respectively, were determined, corresponding to dissociation constant Kd of 36 microM at -20 mV. These results are very similar to those reported for cardiac muscle Ca channels (Lansman, J. B., P. Hess, and R. W. Tsien. 1986. J. Gen. Physiol. 88:321–347). In contrast, Cd2+ (01–10 mM), when applied to the internal surface of Ca channels in inside-out patches, did not affect the mean open time, mean unitary current, or the variance of the open channel current. Internal calcium induced a flickery block, with a Kd of 5.8 mM. Mean blocking and unblocking rate constants for calcium of 0.56 mM-1 ms-1 and 3.22 ms-1, respectively, were determined. Internal barium (8 mM) reduced the mean unitary current by 36%. We conclude that under our experimental conditions, the Ca channel is not symmetrical with respect to inorganic ion block and that intracellular calcium can modulate Ca channel currents via a low-affinity binding site

    Functional maturation of isolated neural progenitor cells from the adult rat hippocampus

    Get PDF
    Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.S., Cool, S.M. & Nurcombe, V. (2002) Int. J. Dev. Biol., 46, 661-670]. In this study, the active and passive electrical properties of both undifferentiated and differentiated adult hippocampal NPCs, from 0 to 12 days in vitro as single-cell preparations, were investigated. Sparsely plated, undifferentiated NPCs had a resting membrane potential of approximate to -90 mV and were electrically inexcitable. In > 70%, ATP and benzoylbenzoyl-ATP evoked an inward current and membrane depolarization, whereas acetylcholine, noradrenaline, glutamate and GABA had no detectable effect. In Fura-2-loaded undifferentiated NPCs, ATP and benzoylbenzoyl-ATP evoked a transient increase in the intracellular free Ca2+ concentration, which was dependent on extracellular Ca2+ and was inhibited reversibly by pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), a P2 receptor antagonist. After differentiation, NPC-derived neurons became electrically excitable, expressing voltage-dependent TTX-sensitive Na+ channels, low- and high-voltage-activated Ca2+ channels and delayed-rectifier K+ channels. Differentiated cells also possessed functional glutamate, GABA, glycine and purinergic (P2X) receptors. Appearance of voltage-dependent and ligand-gated ion channels appears to be an important early step in the differentiation of NPCs

    Intracellular perfusion of excitable cells

    No full text
    corecore