2 research outputs found

    Robots in special education: reasons for low uptake

    Get PDF
    Purpose: This paper identifies the main reasons for low uptake of robots in Special Education, obtained from an analysis of previous studies that used robots in the area, and from interviewing Special Education teachers about the topic. Design/methodology/approach: An analysis of 18 studies that used robots in Special Education was performed, and the conclusions were complemented and compared with the feedback from interviewing 13 Special Education teachers from Spain and UK about the reasons they believed caused the low uptake of robots in Special Education classrooms. Findings: Five main reasons why Special Education schools do not normally use robots in their classrooms were identified: the inability to acquire the system due to its price or availability; its difficulty of use; the low range of activities offered; the limited ways of interaction offered; and the inability to use different robots with the same software. Originality/value: Previous studies focused on exploring the advantages of using robots to help children with Autistic Spectrum Conditions and Learning Disabilities. This study takes a step further and looks into the reasons why, despite the benefits shown, robots are rarely used in real-life settings after the relevant study ends. The authors also present a potential solution to the issues found: involving end users in the design and development of new systems using a user-centred design approach for all the components, including methods of interaction, learning activities, and the most suitable type of robots

    Educational Robots and Their Control Interfaces: How Can We Make Them More Accessible for Special Education?

    Get PDF
    Existing design standards and guidelines provide guidance on what factors to consider to produce interactive systems that are not only usable, but also accessible. However, these standards are usually general, and when it comes to designing an interactive system for children with Learning Difficulties or Disabilities (LD) and/or Autism Spectrum Conditions (ASC) they are often not specific enough, leading to systems that are not fit for that purpose. If we dive into the area of educational robotics, we face even more issues, in part due to the relative novelty of these technologies. In this paper, we present an analysis of 26 existing educational robots and the interfaces used to control them. Furthermore, we present the results of running focus groups and a questionnaire with 32 educators with expertise in Special Education and parents at four different institutions, to explore potential accessibility issues of existing systems and to identify desirable characteristics. We conclude introducing an initial set of design recommendations, to complement existing design standards and guidelines, that would help with producing future more accessible control interfaces for educational robots, with an especial focus on helping pupils with LDs and/or ASC
    corecore