1,035 research outputs found

    The Nucleon-Nucleon Potential in the Chromo-Dielectric Soliton Model: Statics

    Full text link
    We study the N-N interaction in the framework of the chromo-dielectric soliton model. Here, the long-range parts of the nonabelian gluon self-interactions are assumed to give rise to a color-dielectric function which is parameterized in terms of an effective scalar background field. The six-quark system is confined in a deformed mean field through an effective non-linear interaction between the quarks and the scalar field. The CDM is covariant, respects chiral invariance, leads to absolute color confinement and is free of the spurious long range Van der Waals forces which trouble non-relativistic investigations employing a confining potential. Six-quark molecular-type configurations are generated as a function of deformation and their energies are evaluated in a coupled channel analysis. By using molecular states instead of cluster model wave functions, all important six-quark configurations are properly taken into account. The corresponding Hamiltonian includes the effective interaction between the quarks and the scalar background field and quark-quark interactions generated through one gluon exchange treated in Coulomb gauge. When evaluating the gluonic propagators, the inhomogeneity and deformation of the dielectric medium are taken into account. Results for the adiabatic nucleon-nucleon potential are presented, and the various contributions are discussed. Finally, an outlook is given on how, in the next stage of our investigation, the dynamical effects will be incorporated by employing the generator coordinate method.Comment: 43 pages, REVTeX file followed by 11 uuencoded PostScript figures, DOE/ER/40427-02-N9

    Multiquark Systems in a Constituent Quark Model with Chiral Dynamics

    Get PDF
    We discuss the stability of multiquark systems within the recent model of Glozman et al. where the chromomagnetic hyperfine interaction is replaced by pseudoscalar-meson exchange. We find that such an interaction binds a heavy tetraquark system QQqˉqˉQQ\bar q\bar q (Q=c,bQ=c, b and q=u,d)q=u, d) by 0.20.40.2-0.4 GeV. This is at variance with results of previous models where ccqˉqˉcc\bar q\bar q is unstable.Comment: 6 pages, Plain Latex, Contribution to the Workshop''Quark Confinement and the Hadron Spectrum II'', Como, Italy, June 26--29, 1996, to appear in the Proceedings, ed. Nora Brambilla, World Scientifi

    Quasi-Two-Body Decays of Nonstrange Baryons

    Full text link
    We examine the decays of nonstrange baryons to the final states Δπ\Delta\pi, NρN\rho, NηN\eta, NηN\eta^\prime, NωN\omega, N1/2+(1440)πN1/2^+(1440)\pi, and Δ3/2+(1600)π\Delta3/2^+(1600)\pi, in a relativized pair-creation(3P0^3P_0) model which has been developed in a previous study of the NπN\pi decays of the same baryon states. As it is our goal to provide a guide for the possible discovery of new baryon states at CEBAF and elsewhere, we examine the decays of resonances which have already been seen in the partial-wave analyses, along with those of states which are predicted by the quark model but which remain undiscovered. The level of agreement between our calculation and the available widths from the partial-wave analyses is encouraging.Comment: 41 pages, CEBAF-TH-93-1

    Heavy-Flavour Pentaquarks in a Chiral Constituent Quark Model

    Get PDF
    Within the chiral constituent quark model of Glozman and Riska, we discuss the stability of heavy pentaquarks, i.e. hadrons containing four light quarks and a heavy antiquark. The spin-dependent part of the Hamiltonian is dominated by the short-range part of the Goldstone-boson-exchange interaction. We find that these systems are not bound, having an energy above the lowest dissociation threshold into a baryon and a meson.Comment: 10 pages + table

    On a three-body confinement force in hadron spectroscopy

    Get PDF
    Recently it has been argued that a three-body colour confinement interaction can affect the stability condition of a three-quark system and the spectrum of a tetraquark described by any constituent quark model. Here we discuss the role of a three-body colour confinement interaction in a simple quark model and present some of its implications for the spectra of baryons, tetraquarks and six-quark systems.Comment: 19 pages (RevTeX), addition of new material regarding the NN interaction, more accurate discussion of the baryonic case, accepted for publication in Phys. Rev.

    New approach to 4^4He charge distribution

    Get PDF
    We present a study of the 4^4He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the 4^4He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.Comment: 9 pages, LaTeX, 4 figures (Figures 1 and 2 doesn't exist as postscript files : they are only available on request

    The Application of the Econometric Models with Qualitative Variables in the Analysis of the Non Academic Behaviors at the Level of the Romanian Higher Education System

    Get PDF
    The purpose of this paper was to apply the econometric models with qualitative variables in order to analyze two non academic behaviors at the level of the Romanian higher education system: cheating on the exams by copying or by direct or intermediary intervention at the professor.Logit Model, survey, sample, fraud

    New Baryons in the Delta eta and Delta omega Channels

    Full text link
    The decays of excited nonstrange baryons into the final states Delta eta and Delta omega are examined in a relativized quark pair creation model. The wavefunctions and parameters of the model are fixed by previous calculations of N pi and N pi pi, etc., decays through various quasi-two body channels including N eta and N omega. Our results show that the combination of thresholds just below the region of interest and the isospin selectivity of these channels should allow the discovery of several new baryons in such experiments.Comment: 10 pages, RevTe

    Strange Decays of Nonstrange Baryons

    Get PDF
    The strong decays of excited nonstrange baryons into the final states Lambda K, Sigma K, and for the first time into Lambda(1405) K, Lambda(1520) K, Sigma(1385) K, Lambda K*, and Sigma K*, are examined in a relativized quark pair creation model. The wave functions and parameters of the model are fixed by previous calculations of N pi and N pi pi, etc., decays. Our results show that it should be possible to discover several new negative parity excited baryons and confirm the discovery of several others by analyzing these final states in kaon production experiments. We also establish clear predictions for the relative strengths of certain states to decay to Lambda(1405) K and Lambda(1520) K, which can be tested to determine if a three-quark model of the Lambda(1405) K is valid. Our results compare favorably with the results of partial wave analyses of the limited existing data for the Lambda K and Sigma K channels. We do not find large Sigma K decay amplitudes for a substantial group of predicted and weakly established negative-parity states, in contrast to the only previous work to consider decays of these states into the strange final states Lambda K and Sigma K.Comment: 25 pages, 8 figures, RevTe
    corecore