897 research outputs found

    Benchmark footbridge for vibration serviceability assessment under vertical component of pedestrian load

    Get PDF
    Vibration serviceability criteria are governing the design and determining the cost of modern, slender footbridges. Efficient and reliable evaluation of dynamic performance of these structures usually requires a detailed insight into the structural behaviour under human induced dynamic loading. Design procedures are becoming ever more sophisticated and versatile and for their successful use a thorough verification on a range of structures is required. The verification is currently hampered by a lack of experimental data that are presented in the form directly usable in the verification process

    Quantification of dynamic excitation potential of pedestrian population crossing footbridges

    Get PDF
    Due to their slenderness, many modern footbridges may vibrate significantly under pedestrian traffic. Consequently, the vibration serviceability of these structures under human-induced dynamic loading is becoming their governing design criterion. Many current vibration serviceability design guidelines, concerned with prediction of the vibration in the vertical direction, estimate a single response level that corresponds to an "average" person crossing the bridge with the step frequency that matches a footbridge natural frequency. However, different pedestrians have different dynamic excitation potential, and therefore could generate significantly different vibration response of the bridge structure. This paper aims to quantify this potential by estimating the range of structural vibrations (in the vertical direction) that could be induced by different individuals and the probability of occurrence of any particular vibration level. This is done by introducing the inter- and intra-subject variability in the walking force modelling. The former term refers to inability of a pedestrian to induce an exactly the same force with each step while the latter refers to different forces (in terms of their magnitude, frequency and crossing speed) induced by different people. Both types of variability are modelled using the appropriate probability density functions. The probability distributions were then implemented into a framework procedure for vibration response prediction under a single person excitation. Instead of a single response value obtained using currently available design guidelines, this new framework yields a range of possible acceleration responses induced by different people and a distribution function for these responses. The acceleration ranges estimated are then compared with experimental data from two real-life footbridges. The substantial differences in the dynamic response induced by different people are obtained in both the numerical and the experimental results presented. These results therefore confirm huge variability in different people's dynamic potential to excite the structure. The proposed approach for quantifying this variability could be used as a sound basis for development of new probability-based vibration serviceability assessment procedures for pedestrian bridges

    Vibration serviceability of footbridges under human-induced excitation : a literature review

    Get PDF
    Increasing strength of new structural materials and longer spans of new footbridges, accompanied with aesthetic requirements for greater slenderness, are resulting in more lively footbridge structures. In the past few years this issue attracted great public attention. The excessive lateral sway motion caused by crowd walking across the infamous Millennium Bridge in London is the prime example of the vibration serviceability problem of footbridges. In principle, consideration of footbridge vibration serviceability requires a characterisation of the vibration source, path and receiver. This paper is the most comprehensive review published to date of about 200 references which deal with these three key issues. The literature survey identified humans as the most important source of vibration for footbridges. However, modelling of the crowd-induced dynamic force is not clearly defined yet, despite some serious attempts to tackle this issue in the last few years. The vibration path is the mass, damping and stiffness of the footbridge. Of these, damping is the most uncertain but extremely important parameter as the resonant behaviour tends to govern vibration serviceability of footbridges. A typical receiver of footbridge vibrations is a pedestrian who is quite often the source of vibrations as well. Many scales for rating the human perception of vibrations have been found in the published literature. However, few are applicable to footbridges because a receiver is not stationary but is actually moving across the vibrating structure. During footbridge vibration, especially under crowd load, it seems that some form of human–structure interaction occurs. The problem of influence of walking people on footbridge vibration properties, such as the natural frequency and damping is not well understood, let alone quantified. Finally, there is not a single national or international design guidance which covers all aspects of the problem comprehensively and some form of their combination with other published information is prudent when designing major footbridge structures. The overdue update of the current codes to reflect the recent research achievements is a great challenge for the next 5–10 years

    Adaptive evolution of transcription factor binding sites

    Get PDF
    The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background) mutation rate, the selection coefficient, and the effective population size. The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.Comment: published versio
    • …
    corecore