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ABSTRACT 

Due to their slenderness, many modern footbridges may vibrate significantly under pedestrian traffic. 

Consequently, the vibration serviceability of these structures under human-induced dynamic loading is 

becoming their governing design criterion. Many current vibration serviceability design guidelines, 

concerned with prediction of the vibration in the vertical direction, estimate a single response level that 

corresponds to an “average” person crossing the bridge with the step frequency that matches a footbridge 

natural frequency. However, different pedestrians have different dynamic excitation potential, and 

therefore could generate significantly different vibration response of the bridge structure. This paper aims 

to quantify this potential by estimating the range of structural vibrations (in the vertical direction) that 

could be induced by different individuals and the probability of occurrence of any particular vibration 

level. This is done by introducing the inter- and intra-subject variability in the walking force modelling. 

The former term refers to inability of a pedestrian to induce an exactly the same force with each step 

while the latter refers to different forces (in terms of their magnitude, frequency and crossing speed) 

induced by different people. Both types of variability are modelled using the appropriate probability 

density functions. The probability distributions were then implemented into a framework procedure for 

vibration response prediction under a single person excitation. Instead of a single response value obtained 

using currently available design guidelines throughout the world, this new framework yields a range of 

possible acceleration responses induced by different people and a distribution function for these 

responses. The acceleration ranges estimated are then compared with experimental data from two real-life 

footbridges. The substantial differences in the dynamic response induced by different people are obtained 

in both the numerical and the experimental results presented. These results therefore confirm huge 

variability in different people’s dynamic potential to excite the structure. The proposed approach for 

quantifying this variability could be used as a sound basis for development of new probability-based 

vibration serviceability assessment procedures for pedestrian bridges. 

Keywords: footbridge, vibration serviceability, probabilistic model, walking, dynamic excitation 

potential, variability. 
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1 Introduction 

Due to their slenderness, new footbridges are nowadays more susceptible to vibration serviceability 

problems under human-induced load than they were in the past [1]. To predict the vibration response of a 

new structure it is necessary to model accurately both the human-induced dynamic loading and structural 

dynamic properties. Probably the first codified model of the walking force induced in the vertical 

direction has been defined in BS 5400 [2] in the 1970s. This model requires calculation of the response to 

a single “average” person walking across a footbridge at a frequency that matches one of the natural 

frequencies of the footbridge. The human-induced walking force is modelled as a sinusoidal, and 

therefore deterministic, force moving across the bridge at a constant speed and having predefined constant 

amplitude. The reason for choosing this resonant force model is that it is considered as the worst-case 

scenario. This time-domain deterministic approach is widely used worldwide. In recent years, some new 

and interesting approaches to modelling the walking force induced by a single pedestrian have been 

developed, but still did not find their way into the design guidelines mainly due to their complexity. Some 

examples of these are a frequency domain model that takes into account the narrow-band nature of 

human-induced force [3] and its improvement that relies on Monte Carlo simulations [4]. Additionally, 

since the infamous problem with excessive lateral vibrations of the London Millennium Bridge in 2000 

[5], the research community worldwide has been attracted by this new challenge to study lateral vibration 

response of footbridges under crowd load [5-8]. However, the design approach to check for vibration 

serviceability of footbridges in the vertical direction has remained where it was in the 1970s. This is the 

reason to concentrate on commenting on and evaluating the BS 5400 approach in this paper, devoted 

exclusively to the vibration response in the vertical direction. The main shortcomings of the BS 

deterministic model are: 

• It does not take into account inter-subject variability, i.e. that different people generate different 

forces during walking, and therefore have different excitation potential [9]. 

• It neglects intra-subject variability, i.e. that a pedestrian can never repeat two exactly the same 

steps [3]. 

• It assumes that the resonant condition is achieved under a single person walking on an as-built 

footbridge. However, it is very often difficult to match the footbridge natural frequency during 
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walking, especially when the natural frequency requires either too slow or too fast pacing for an 

average pedestrian. 

• The assessment approach is based on a binary pass-fail philosophy which is more suitable for 

ultimate than for vibration serviceability limit state. 

As a consequence of these shortcomings and simplifications, the existing harmonic force model often 

significantly overestimates or underestimates experimentally measured footbridge responses. The level of 

disagreement depends on viability of parameters (forcing amplitude, step length and frequency) used for 

describing the average person and the walking style of people taking part in the experiments.  

To overcome these shortcomings and model reality better, which is the key aim when checking as-built 

vibration serviceability in day to day operation, it is preferable to consider the whole population of 

pedestrians using the bridge instead of singling out an “average” person only. To model the forces 

induced by different people a probabilistic framework for force modelling and response prediction is 

required. In such an approach, the modelling parameters could be described via their probability density 

functions and therefore introduced into calculation via their probability of occurrence. The main factors 

selected to represent the inter-subject variability are: walking (step) frequency, step length and magnitude 

of the dynamic force [4]. The probability distribution functions for the three parameters are presented in 

this paper based on currently available data. These distributions could easily be changed depending on 

characteristics of the pedestrian population of interest. They typically depend on the purpose of the 

footbridge analysed, its environment, geographic location, etc. For example, it seems that people in Japan 

generally walk with faster step frequency than people in Montenegro, as will be demonstrated in Section 

2.2. This is probably a consequence of the way of life in these two countries as well as the fact that 

Montenegrins are, on average, taller than Japanese. In addition to the inter-subject variability, the intra-

subject variability in the walking-induced force is also modelled via probability density function that 

quantifies now well known inability of a pedestrian to make exactly the same step twice [3]. 

It should be mentioned that Ebrahimpour et al. [10] have been working on a probability approach for 

modelling the walking force. They observed the importance of inter- and intra-subject variability in 

modelling. However, more than a decade after their work there is still no a single design guideline 

featuring a probabilistic force model – neither for a single person nor for the crowd loading. A recent 

work by the authors [4] pursued the probabilistic approach, implementing it for complex multi-mode 
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responses of footbridges. However, this approach based on Monte Carlo simulations might not be the 

most efficient way to deal with simple footbridges that respond dominantly in a single vibration mode.  

This paper concentrates on probabilistic modelling of the vertical component of the walking force 

induced by a single person on a bridge which vibration response is dominated by a single mode. The aim 

is to quantify the range of dynamic responses that could be generated by different walkers. This is 

considered to be a prudent way forward to update the current single person walking model featuring in 

many design guidelines, such as BS5400 in the UK [2] and Ontario Code in Canada [11]. Similarly, the 

uncertainties in the dynamic parameters (modal mass, damping ratio and natural frequency) describing 

the structure that vibrates due to the walking excitation could be included into a future framework for 

probabilistic assessment of human-induced vibration. A model of this kind would be able to estimate the 

vibration response of the structure in probabilistic sense. Finally, this estimate could then be combined 

with the probabilistic model of human perception of vibration of the kind suggested in [12] to judge the 

vibration serviceability of a footbridge against walking excitation. However, probabilistic modelling of 

both the structure and the human response to vibration are outside the scope of this paper. Instead, the 

emphasis is on different excitation potential of different people via probabilistic force modelling. 

In this paper firstly the main modelling assumptions are defined. Then, a probability based procedure for 

modal response calculation is explained and applied to two footbridges with experimentally estimated 

modal properties. Based on this, the probability of having a certain level of vibration is obtained. The 

range of calculated vibration response levels was compared with the single value from a deterministic 

procedure and checked against some available real-life measurements. 

2 Modelling assumptions 

This section aims to describe the parameters important for the probabilistic modelling of the walking 

force. These are: walking frequency, force amplitude, step length and imperfections in human walking. 

Probability distributions of these random variables are suggested based either on the data available in 

literature or the data gathered previously by the authors [1, 13]. Based on experience from full scale lively 

footbridges where the first harmonic of the walking force is often responsible for generating strong 

structural vibrations [1], it was decided to consider only this harmonic in this paper. 



This paper has been published under the following reference: 
Živanović, S. and Pavic, A. (2011) Quantification of dynamic excitation potential of pedestrian population 
crossing footbridges, Shock and Vibration, Vol. 18, No 4, pp. 563-577, doi:10.3233/SAV-2010-0562 

6 

2.1 Footbridge as SDOF system 

Footbridges are structures that often have well separated frequencies of vibration modes, each of which 

could be modelled as a single degree of freedom (SDOF) system with known modal properties (natural 

frequency, modal mass and damping ratio). Among these modes, usually only one is responsible for the 

footbridge liveliness [14]. The shape of this mode could often be approximated by a half-sine function. 

These assumptions are used in the study presented. 

2.2 Walking (step) frequency 

Matsumoto et al. [15] identified the normal distribution of human walking frequencies with the mean 

value of 2.00 Hz and standard deviation of 0.173 Hz. This was identified using a sample of 505 people. 

Recently, a more extensive work was conducted on a full scale pedestrian bridge in Montenegro where 

the step frequency was estimated by analysing video records of 1976 people during their crossing over the 

footbridge [13]. It was confirmed that the distribution of human walking frequencies follows the normal 

distribution, but with mean value of 1.87 Hz and standard deviation of 0.186 Hz (Figure 1a). As already 

mentioned, it is likely that the distribution parameters differ between different countries (say, between 

Japan and Montenegro), different footbridge locations and utilisations, etc. In this paper, the distribution 

identified on the footbridge in Montenegro is used since this footbridge is one of the two structures 

investigated and presented here. Also, this distribution has the mean value that is closer to that found by 

some other European researchers in recent years: 1.9 Hz reported by Kerr & Bishop [16] and 1.8 Hz by 

Pachi & Ji [17], as well as by Sahnaci & Kasperski [18]. 

To incorporate the probability density function shown in Figure 1a into the calculation of footbridge 

response, it is convenient to transform the horizontal axis into a frequency ratio between the step 

frequency and the natural frequency of a particular footbridge. An example for a footbridge with natural 

frequency of 2.04 Hz is presented in Figure 1b. It can be seen that frequency ratio ranges between 0.64 

and 1.19 for this particular bridge. During the transformation the vertical axis was multiplied by 2.04 Hz 

to preserve the area defined by the probability density function being dimensionless number equal to 1 

[19]. 
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2.3 Step length 

The length of a step made during walking differs between different individuals [17]. The step length ls 

multiplied by the step frequency fs equals to the walking speed vp, which determines the time a pedestrian 

needs for crossing a walking path specified. More attention to collecting the experimental data about the 

relationship between the walking parameters on as-built footbridges has been paid in recent years [17, 

20]. For example, it was found that the degree of linear correlation between the walking frequency and 

step length is very small [20]. This suggests that these two parameters could be treated as independent 

random variables. Similarly to the step frequency, the step length can also be modelled as normally 

distributed with mean value of 0.71 m and standard deviation of 0.071 m [17, 20]. 

2.4 Force amplitude 

When modelling the walking-induced force as a harmonic force, its amplitude is usually defined as a 

portion of the pedestrian’s weight, that is as a product of a dimensionless coefficient called Dynamic 

Load Factor (DLF) and the pedestrian’s weight W. The most extensive research to date into DLFs was 

conducted by Kerr [9]. He analysed about 1000 force records produced by 40 test subjects and presented 

DLFs for different force harmonics as a function of the walking frequency. DLFs for the first harmonic as 

obtained by Kerr are shown in Figure 2a. The dependence of the approximate mean value of DLF DLFμ  

on the step frequency sf  is given by: 

 3 2
DLF -0.2649 1.3206 1.7597 0.7613.s s sf f fμ = + − +  (1) 

Kerr [9] also found that in the normal walking frequency range 1.5-2.2 Hz, 95% of DLFs lie in the area 

DLF DLF0.32μ μ± . Under an assumption that DLFs are normally distributed around their mean value (for a 

specific walking frequency), the standard deviation can be defined as DLF DLF0.16σ μ= . 

The described probability density function for a DLF can be normalised to the value of the mean DLF 

(Figure 2b). It should be noticed that this function does not depend on the walking frequency. Since the 

modal response of a linear SDOF footbridge model is directly proportional to the DLF then, for example, 

1.5 times increase in the DLF will generate 1.5 times higher modal response. By this analogy it can be 

concluded that the probability of the ratio between the actual modal acceleration response and the 

response to the mean value of DLF is the same as the probability of the ratio between the actual DLF and 
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the mean DLF. This enables the use of only the mean DLF when calculating structural modal response. 

After this calculation the probability that this ‘mean’ response is different from the actual one can be 

estimated.  

Regarding pedestrian weight W there are indications that its increase leads to increase of DLFs [21]. 

However, an explicit quantification of this dependence is yet to be made. Also, it is difficult to find a 

precise description of the probability distribution of the pedestrian weight (i.e. its type and parameters 

describing it), although some (incomplete) information is available [22]. These were the reasons to omit 

this distribution from the analysis and use an average weight of 750 N [22] in the formulation of the force 

model. When more data describing the distribution of the weight and its relationship with the DLFs are 

collected, they can easily be combined with the probability distribution of DLFs to a single probability 

distribution defining the amplitude of the sinusoidal walking force (DLF·W). 

2.5 Intra-subject variability in force 

So far in this paper the inter-subject variability in the walking force was modelled via appropriate 

probability distributions related to the step frequency, the step length and the force amplitude. The two 

parameters: step frequency fs and force magnitude DLF·W fully describe a harmonic force model, while 

the step length ls, multiplied by step frequency, defines the walking speed which in turn determines the 

time spent on crossing the bridge. Therefore, so far the walking force was assumed to be periodic so that 

its first harmonic could be modelled as a sinusoidal force. Under this force the modal acceleration 

response ( )sina t  can be calculated, taking into account the half-sine mode shape. However, in the same 

way that some people are able to walk steadily and induce an almost perfectly sinusoidal first harmonic 

[23], there are many more people who cannot do this. Due to intra-subject variability the force induced in 

every step is usually slightly different in terms of its frequency content and amplitude and it should be 

treated as a narrow band random process rather than a sinusoidal force [3, 18].  

One way to consider this, and at the same time to keep simplicity of the response calculation 

corresponding to harmonic force excitation, is to define the probability that the modal response to an 

actual (measured) walking force ( )ca t  will be different from that generated by a sine force ( )sina t . 

Examples of such responses are shown in Figure 3 as black and grey lines, respectively. The 

corresponding peak responses in Figure 3 are denoted as Ac and Asin. 
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Figure 3a presents the two modal responses when a pedestrian walks at a step frequency that matches a 

footbridge natural frequency, while in Figure 3b they walk at a step frequency equal to 80% of the natural 

frequency. In the latter case, the beating response, noticed in some real-life measurements when walking 

with out-of-resonance frequency, is present in the calculated response to the treadmill-measured walking 

time history (Figure 3b black-dashed line). This pattern is almost non-existent in the case of simulation 

due to the sinusoidal force (Figure 3b grey line). 

The ratio between the two peak modal responses will be called the correction coefficient c : 

 c

sin

A
c

A
=  (2) 

and it is this factor that will be used for introducing the intra-subject variability into calculation of the 

actual peak modal response. 

To define the probability density function for the correction coefficient c , 95 walking forces measured 

by Brownjohn et al. [3] on a treadmill were analysed. These walking forces were produced by eight test 

subjects who were asked to walk for at least 60 s on a treadmill set to a constant speed. The speed range 

was between 2.5 km/h and 8.0 km/h in different tests. Therefore, the walking speed was set to a constant 

value during each test, while the walking frequency was freely chosen by each test subject so that they 

could walk in a comfortable manner. 

The measured walking forces were band-pass filtered around the walking frequency so that only force 

components pertinent to the first harmonic remained. Then, the filtered force was multiplied by the half 

sine mode shape to get the modal force. Finally, peak modal acceleration response of the SDOF model to 

this force was calculated. The natural frequency of the footbridge (i.e. the SDOF system) was studied 

parametrically and assumed to be in the range between /1.20sf  and / 0.80sf , where sf  is the average 

walking frequency, while modal damping ratio ranged between 0.1% and 2.0%. For each response 

calculation the peak modal acceleration response cA  obtained in this way was divided by the peak modal 

acceleration response sinA  due to a corresponding sinusoidal force to calculate the correction 

coefficient c . The amplitude of the sinusoidal force was defined as the average amplitude of the filtered 

force measured on the treadmill. 
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A general observation from the results obtained is that the peak modal acceleration due to measured 

walking force is attenuated when walking in resonance in comparison with that produced by the 

corresponding sinusoidal force, i.e. the correction coefficient is less than 1 (Figure 3a). This is a 

consequence of the inability of the test subject to walk at the constant frequency all the time. It should, 

however, be noticed that some test subjects produced almost perfect sine force leading to the correction 

coefficient equal to 1. In few cases, the correction coefficient was even greater than 1. This was a 

consequence of having several heavy footfalls (i.e. footfalls in which the force amplitude was higher than 

the average one) occurring when vibrations have already been well developed. On the other hand, when 

the step frequency is away from the natural frequency, the correction coefficient is mainly greater than 1 

(Figure 3b). The reason for this are again imperfections in human walking frequency from one step to 

another, but this time its slight change leads to being closer to the resonant frequency from time to time, 

causing an actual acceleration response to be greater than the one generated by a sine force.  

Different distributions for fitting the correction coefficient data (for specific combination of damping 

ratios and natural frequencies) were tried. Among them, it was found that a gamma distribution best 

described the probability distribution of the correction coefficient. An example of the quality of the 

approximation can be seen in Figure 4.  

The gamma distribution could describe a trend that with increasing damping ratio the scatter of the 

calculated correction coefficient decreases, with the most probable correction coefficient approaching 1.0. 

This makes sense considering that the sharpness of the resonant peak in the frequency domain decreases 

with increasing damping. An example of resulting gamma distributions for 1.15s nf f=  is shown in 5a. 

Also, the gamma distribution can represent the fact that for non-resonant walking, the increase in the 

walking to natural frequency ratio leads to smaller scatter in the correction coefficient, with its peak 

approaching the value equal to 1. An example for a bridge with a damping ratio of 0.4%ζ =  is presented 

in Figure 5b. 

The probability density function ( )f x  for the gamma distribution is defined by the following formula 

[19]: 

 ( )
1

1

0

x
a b

a a x

x ef x
b x e dx

−−

∞
− −

=

∫
 (3) 
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where x  is the random variable (i.e. correction coefficient c ). The distribution shape is uniquely 

determined by parameters a  and b . The parameters were identified for footbridges with different 

damping ratios and different walking frequencies (Table 1 and Table 2). For a footbridge with an arbitrary 

damping ratio and/or frequency ratio the two parameters could be approximated using  closest values of 

damping and frequency ratios available in the tables. 

3 Prediction of footbridge response to single person walking 

This section describes the general framework for probabilistic description of footbridge vibration 

response to a single person crossing. The framework methodology is described step-by-step so that it can 

be implemented on generic footbridge structures where a vertical dynamic excitation due to a single 

person walking is a relevant design criterion. Statistical distributions for different parameters defined in 

the previous section are used for this purpose. The procedure is applied on two pilot structures. First, an 

as-built footbridge in Montenegro where only the first walking harmonic was relevant and the mode 

shape could be approximated by a half sine function is investigated. After this, the procedure is repeated 

for another footbridge. 

The footbridge in Montenegro (hereafter referred to as Footbridge 1) is a steel box girder footbridge 

shown in Figure 6a. Its length is 104 m, with 78 m between inclined columns. The footbridge responds to 

normal walking excitation dominantly in the first vibration mode with frequency at 2.04 Hz [13]. The 

mode shape and modal properties of this mode (natural frequency nf , damping ratio ζ and modal mass 

m) as measured are shown in Figure 6b. 

3.1 Peak modal response to sinusoidal excitation 

The first step in the analysis is to calculate the peak modal response of the SDOF system to sinusoidal 

excitation. Assuming the half-sine mode shape, the equation of motion in its modal form can be written as 

[24]: 

 ( ) ( ) ( ) ( ) ( ) ( )2

sin

12 2 2 sin 2 sin ,

φ

π
ζ π π π

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟

⎝ ⎠

⎛ ⎞+ + = ⋅ ⋅ ⋅ ⎜ ⎟
⎝ ⎠

s s
n n s

F t
t

f l
a t f v t f d t DLF W f t t

m L
 (4) 
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where ( ) ( ),a t v t  and ( )d t  are modal acceleration, velocity and displacement of the footbridge structure, 

respectively, while ,mζ  and nf  are modal damping, mass and natural frequency, respectively. The right 

hand side of the equation represents the modal force acting on the SDOF system obtained by 

multiplication of the sinusoidal force ( )sinF t  by the half-sine mode shape ( )tφ . The frequency of the 

force ( )sinF t  is sf  while its amplitude is defined as a product of the mean DLF dependent on sf  

(defined in Equation (1)) and an assumed average pedestrian weight W =750 N [22]. The mode shape 

( )tφ  was initially a space function dependent on pedestrian position on the bridge x  and footbridge 

length L . However, by assuming a constant pedestrian velocity vp, the mode shape defined along the 

bridge length can be transformed into a time-varying function: 

 
( )

sin sin sinp s sv t f lx t
L L L

π ππ ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 (5) 

where ls is the step length. 

Using simple trigonometric transformations Equation (4) could be rewritten in the form: 

( ) ( ) ( ) ( ) ( )22 2 2 cos 2 cos 2
2

π π
ζ π π π π

⎛ ⎞⋅ ⎛ ⎞ ⎛ ⎞
+ + = − − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
s s s s

n n s s

f l f lDLF Wa t f v t f d t f t f t
m L L

        (6) 

for which analytical solutions to two cosine modal force terms on the right hand side could be found in 

literature [24]. Summing up these two solutions the total response of the structure to a harmonic force 

moving over a bridge characterised by a half-sine mode shape could be determined.  

For Footbridge 1 the solution was found for different combinations of step to natural frequency ratios and 

step lengths (belonging to the previously defined normal distributions). The resulting peak modal 

acceleration shown in Figure 7a gives a range of possible peak modal acceleration responses sinA  under 

sinusoidal force excitation. 

3.2 Joint probability for walking parameters 

As explained previously, the walking frequency and the step length are independent normally distributed 

variables. Therefore, the joint probability of walking at a particular frequency sf  and having a particular 
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step length sl  during a footbridge crossing can be calculated by multiplying the two normal probability 

density functions [19]. The resulting joint probability density function is shown in Figure 7b. 

3.3 Modification of peak modal response sinA  due to intra-subject 
variability 

For every pair of frequency ratio /s nf f  and step length sl , it is possible to find the peak modal 

acceleration sinA  due to a sine force (Figure 7a) as well as a point in the probability density function 

( )/ ,s n sp f f l (Figure 7b) that represents exactly this combination of /s nf f  and sl . After this, the fact that 

the peak acceleration level cA  could be higher or lower than that in Figure 7a due to intra-subject 

variability can be introduced. For this purpose the peak acceleration sinA  from Figure 7a for each point 

( )/ ,s n sf f l  is multiplied by the correction coefficient c  from the appropriate gamma distribution 

defined in Section 2.5: sin .cA c A= ⋅  In this way a range of possible peak acceleration values cA for each 

sinA  from Figure 7a has been obtained. 

It should be noted here that the gamma distribution of the correction coefficient chosen for this 

calculation depends on the walking to natural frequency ratio ( )/s nf f . At the same time the probability 

density function of the three variables ( )/ , ,s n sp f f l c  corresponding to each combination of /s nf f , sl  

and c  used for calculation of cA  can be obtained by multiplication of every point in the joint probability 

density function ( )/ ,s n sp f f l  (Figure 7b) by gamma probability density function ( )p c of the kind 

presented in Figure 5: 

 ( ) ( ) ( )/ , , / , .= ⋅s n s s n sp f f l c p f f l p c  (6) 

As the next step, the probability cP  of having peak acceleration cA  can be found as: 

 ( ) ( )/ , , /= ⋅Δ ⋅Δ ⋅Δc s n s s n sP p f f l c f f l c  (7) 

where ( )/ ,Δ Δs n sf f l  and cΔ  are discrete steps used in analysis for the variables / ,s n sf f l  and c , 

respectively. 
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Finally, the probability 
, , 1:c i c iA AP

+
 that the peak acceleration cA  is within a certain interval, such as 

, , 1c i c c iA A A +≤ < , can be found in the well-known way as follows: 

 
, , 1

, , 1

: .
c i c i

c i c c i

A A c
A A A

P P
+

+≤ <

= ∑  (8) 

3.4 Influence of DLF variability on peak modal response 

As the final step in the analysis, the influence of probability of DLF being different from the mean value 

assumed throughout the previous calculation should be taken into account. This can be done by 

multiplying the probability of the acceleration levels obtained in the previous section with the probability 

function related to DLF variation (Figure 2b). After this, the probability that the vibration level is within a 

certain range can be obtained as presented in Figure 8a. It can be concluded that excitation potential of 

different pedestrians might be significantly different. Two extremes in Figure 8a are that some people 

generate low acceleration level below 0.05 m/s2, while some could induce vibration as high as 0.9 m/s2. 

However, it is clear from Figure 8a that as many as 57% of people belong to the first group while a 

negligible number belongs to the second group. 

A more interesting cumulative probability that the acceleration level is either smaller than or equal to a 

certain level is presented in Figure 8b. Having this distribution and assuming that, for example, the 

acceleration level of 0.35 m/s2  is unacceptable, the probability of exceedance of this level could be 

estimated. It can be seen in Figure 8b that this level of vibration is exceeded once in every 20 crossings by 

a single person (5% exceedance probability). Naturally, the probability of exceedance of any other 

vibration level could be obtained from the same figure. 

3.5 Footbridge 2 

The procedure applied to Footbridge 1 is repeated for a light cable-stayed footbridge made of glass 

reinforced plastic (Footbridge 2). The total length of this footbridge is 113 m and its total mass is only 

about 20000 kg. The footbridge is shown in Figure 9a, and the properties of its first mode of vibration, as 

measured during modal testing, are given in Figure 9b. 

Footbridge 2 is a very light structure that is prone to significant vibrations generated by human walking. 

Following exactly the same procedure as for Footbridge 1, the probability distribution of the acceleration 



This paper has been published under the following reference: 
Živanović, S. and Pavic, A. (2011) Quantification of dynamic excitation potential of pedestrian population 
crossing footbridges, Shock and Vibration, Vol. 18, No 4, pp. 563-577, doi:10.3233/SAV-2010-0562 

15 

response due to excitation of the fundamental vibration mode could be calculated (Figure 10a). The 

cumulative distribution of this response is presented in Figure 10b. From this figure it can be seen that, 

for example, only 46% of people (i.e. approximately every second person) would cross the bridge without 

generating vibrations above 0.35 m/s2. Also, due to the lightness of the footbridge, nobody can walk and 

generate vibrations below 0.1 m/s2. 

The result obtained for Footbridge 2 is verified by the response measurements to single person excitation. 

Seven test subjects were asked to cross the bridge with their ‘fast’, ‘normal’ and ‘slow’ pacing rates. For 

each pacing rate two tests were conducted. Therefore, in total 42 crossings of the bridge were analysed, 

and peak modal acceleration was extracted from each of them. In this testing programme, the footbridge 

response was measured at the midspan point. 

Figure 11 shows the probability of different levels of peak modal acceleration measured. It can be seen 

that the observed probability distribution is very similar to the one calculated in Figure 10a (and presented 

by dashed-line in Figure 11) verifying the probabilistic framework used. A summary of the probabilistic 

procedure developed is shown in Figure 12. 

It should be noted that the numerical results for Footbridge 2 are quite similar to those acquired 

experimentally despite the fact that the actual mode shape is not very close to the half-sine function 

(Figure 9b). This difference in mode shapes does introduce some errors in the estimation of the peak 

response. For example, the calculated peak acceleration generated by walking at the resonant frequency at 

speed of 1.08 m/s introduces about 45% higher peak response than that obtained when the measured 

shape of the vibration mode was accounted for. Outside the resonance, this difference is smaller being 

less than 10% when the walking frequency differs by 5% or more from the natural frequency of the 

bridge. The probability that people will walk at or around the resonant frequency of this bridge, which is 

1.52 Hz, is small (Figure 1a), as walking at 1.52 paces per second is quite slow and unnatural pacing rate 

for most people. This means that the assumption about the half-sine mode shape used in calculations is 

not expected to have significant influence on the predicted probability distribution of the vibration 

response. Looking carefully at Figure 11 which shows the measured and calculated distributions, it could 

be seen that the maximum values in the predicted distribution go above 1.3 m/s2 which was the maximum 

measured value. However, these high values occur so rarely that they are not significant when interpreting 

the final results.  
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4 Discussion 

In the case of the two footbridges investigated, a probabilistic approach was able to estimate the range of 

acceleration levels that could be induced by different walkers. As for Footbridge 1, the maximum possible 

acceleration level was found to be about 0.9 m/s2, although a negligible percentage of people is capable of 

generating it. However, it is interesting that during normal multi-pedestrian traffic the peak acceleration 

level measured was often reaching 0.4 m/s2 and occasionally went up to 0.6-0.7 m/s2 [13]. Therefore, on 

Footbridge 1 only the most efficient human dynamic exciters could induce vibrations that are comparable 

with the peak acceleration level measured during the normal pedestrian traffic. 

On the other hand, for Footbridge 2, majority of pedestrians could induce vibrations up to 1 m/s2, while 

the absolute maximum level was around 6 m/s2. The acceleration range calculated and the shape of its 

distribution are in very good agreement with the one identified experimentally (Figure 11). This suggests 

that the probability distributions used are good descriptor of pedestrian population using the bridge.  

It is interesting to compare results of this study with those from the classical deterministic approach. 

Probably the most often used implementation of this approach is that given in the British Standard BS 

5400 [2], which also features in the Canadian design guideline [11]. The walking force therefore is 

modelled as a resonant sine force. The parameters corresponding to BS 5400 procedure are given in 

Table 3. The peak modal response is calculated and shown in the last row of the table. It is equal to 

0.26 m/s2 for Footbridge 1, and 3.12 m/s2 for Footbridge 2. Therefore, the “average” person featuring 

BS5400 generates the acceleration level that is exceeded by only about 7% and 0.8% (according to 

Figures 8b and 10b) of test subjects walking across Footbridge 1 and Footbridge 2, respectively. This is 

because the BS model assumes walking in resonance, which often is not probable walking scenario. 

Therefore, for the case of two footbridges investigated, the BS model represents a more efficient dynamic 

exciter than a real-life average person is. Deterministic models for single pedestrian similar to that of 

BS5400 feature in numerous footbridge related guidelines, such as ISO 10137 [25], UK National Annex 

to Eurocode 1 [26] and Eurocode 5 [27]. Therefore, similar obstacles in implementation of these 

procedures for modelling single pedestrian loading scenario could be expected. 

There are schools of thought that justify the BS5400 approach as the one designed to cater for some more 

complicated (for calculation) load case scenarios, such as normal multi-person pedestrian traffic. 
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However, the peak acceleration value of 0.26 m/s2 for Footbridge 1 is quite an underestimation of the 

peak vibration level measured on the same bridge under multi-person pedestrian traffic, being around 0.6-

0.7 m/s2 [13]. 

As described earlier, the procedure suggested in this paper could be enhanced by introducing probability 

distribution of people’s weight as well as uncertainties in structural dynamic properties in the analysis. 

This would bring possibility for codification of the probabilistic approach in footbridge design. Given that 

it is not realistic to expect in depth training of designers in vibration serviceability field, the possible 

implementation in the design could be realised in at least two ways: either through development of user-

friendly software that can then be used in practice, or through development of ready to use charts, 

similarly to the response spectra developed for series of footbridges by Wan et al. [28]. 

5 Conclusions 

A novel probability based framework for predicting vibration response to single person excitation is 

presented in this paper. The novelty of the approach is characterised by including both the inter- and 

intra-subject variability in the walking force into the model proposed. The inter-subject variability is 

included via three probability density functions of forcing amplitude, step frequency and step length while 

the intra-subject variability is modelled using a probability density function representing (in)ability of 

people to produce sinusoidal force while walking. This model is applied to two as-built footbridges with 

known modal properties. In this way a range of acceleration levels that could be generated when a single 

person is crossing the bridge as well as their probabilities is found. Based on this the cumulative 

probability that the response will not exceed certain peak acceleration under a single person walking was 

calculated. This approach to assessing the vibration level under a single person excitation is more 

informative than the single value that is the outcome of the current design guidelines. The single value 

from a typical guideline is found neither to be representative of an average walker nor a good estimate of 

the vibration levels induced by multi-person traffic. 

Therefore, the probabilistic procedure developed in this paper draws the attention of the designers to the 

huge variability in the vibration response that could be induced by different people and presents the way 

of quantifying it. Additionally, the procedure could be used when designing footbridges that are not very 

busy and where a single person loading scenario is the most probable. 
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Table 1: Parameter a of gamma distributions. 

 Damping ratio [%] 

fs/fn 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 

0.80 12.227  12.622  13.001 13.587 14.454 15.166 16.470 17.353 19.560 22.013 

0.85 12.646 13.735 14.510 16.177 17.706 19.067 21.345 23.200 26.629  29.289 

0.90 10.353 12.251 14.350 16.197 17.846 19.273 21.543 23.444 27.443 31.284 

0.95 13.967 16.214 17.874 19.251 20.478 20.701 20.170 22.874 30.449 39.159 

1.00 31.431 41.659 52.926 65.341 78.930 93.821 126.460 161.180 247.620 318.600 

1.05 10.061 10.886 11.934 12.934 13.744 14.415 13.112 15.665 23.409 33.318 

1.10 18.589 20.680 21.812 22.868 23.721 24.045 24.268 22.713 28.083 34.101 

1.15 19.687 23.154 26.071 28.565 30.816 32.872 36.517 39.651 46.277 52.192 

1.20 24.319 28.624 32.605 36.314 39.736 42.967 48.834 53.939 64.153 71.769 
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Table 2: Parameter b of gamma distributions. 

 

 Damping ratio [%] 

fs/fn 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 

0.80 0.2202 0.2019 0.1870 0.1715 0.1550 0.1429 0.1246 0.1133 0.0928 0.0777 

0.85 0.1795 0.1567 0.1422 0.1226 0.1084 0.0979 0.0836 0.0743 0.0609 0.0530 

0.90 0.1922 0.1541 0.1260 0.1080 0.0954 0.0863 0.0745 0.0665 0.0539 0.0455 

0.95 0.1250 0.1038 0.0915 0.0829 0.0762 0.0741 0.0740 0.0632 0.0447 0.0332 

1.00 0.0261 0.0203 0.0163 0.0135 0.0113 0.0097 0.0073 0.0059 0.0039 0.0031 

1.05 0.1673 0.1500 0.1330 0.1197 0.1103 0.1032 0.1114 0.0900 0.0563 0.0376 

1.10 0.0820 0.0719 0.0668 0.0627 0.0596 0.0581 0.0565 0.0596 0.0464 0.0371 

1.15 0.0801 0.0659 0.0570 0.0509 0.0463 0.0427 0.0375 0.0338 0.0279 0.0241 

1.20 0.0618 0.0510 0.0438 0.0386 0.0348 0.0317 0.0273 0.0243 0.0198 0.0173 
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Table 3: Parameters for response simulations, according to BS5400 [3], under a single pedestrian on two 

footbridges. 

Footbridge # 1 2 

Weight [N] 700 700 

Step frequency [Hz] 2.04 1.52 

DLF 0.257 0.257 

Walking speed [m/s] 1.84 1.37 

Peak modal response [m/s2] 0.26 3.12 
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Figure 1: (a) Normal distribution of walking frequencies. (b) Normal distribution when the frequency axis 
is normalised to a footbridge natural frequency in the vertical direction (2.04Hz in this 
example). 
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Figure 2: (a) DLF for first harmonic of the walking force (after Kerr, 1998). (b) Distribution of actual to 
mean DLF ratio for the first walking harmonic of the force induced by walking. 
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Figure 3: Comparison of modal responses due to measured force (black-dashed line) and corresponding 
sine force (grey line) when walking at (a) resonant frequency and (b) non-resonant 
frequency. 
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Figure 4: Distribution of the correction coefficient when walking at pacing rate equal to 0.9fn. 
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Figure 6: Footbridge 1 – (a) photograph and (b) modal properties of the fundamental mode of vibration. 
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Figure 7: (a) Peak modal acceleration response due to sinusoidal walking force and (b) joint probability 

density function for different combinations of step frequency and step length during the footbridge 

crossing. 
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Figure 8: Footbridge 1 – (a) Final probability of a peak modal acceleration level due to single person 
crossing the bridge. (b) Cumulative probability that the acceleration level is smaller than or 
equal to the acceleration level considered (shown on the horizontal axis). 
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Figure 9: Footbridge 2 – (a) photograph and (b) modal properties of the fundamental mode of vibration. 
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Figure 10: Footbridge 2 – (a) Probability of certain acceleration level. (b) Cumulative probability that the 
acceleration level is smaller than or equal to the acceleration level considered. 
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Figure 11: Histogram of measured peak modal acceleration on Footbridge 2. The calculated values from 
Figure 10a are presented as dashed line. 
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Structural properties:
- modal mass 
- modal damping ratio 
- natural frequency 
- span length  (of half-sine mode shape)
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Probabilistic model of harmonic force:
- step to natural frequency distribution ( )
- step length distribution ( )
- deterministic amplitude DLF( ) 
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f W

s n

s

s
.

Response to harmonic force:
- distribution of peak response ( )p Asin

Intra-subject variability:
- distribution of correction coefficient ( )p c

Response to narrow-band force:
- distribution of peak response ( )p Ac

Deviation of DLF from its mean value:
- distribution of DLF/meanDLF ratio (DLF )p ratio

Final response to pedestrian force:
- distribution of peak response ( )p A

 
Figure 12: Summary of the probabilistic calculation procedure. 

 


