7 research outputs found

    How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe

    Get PDF
    Conceptualized by the Food and Agriculture Organization in 2010, climate-smart agriculture aims to simultaneously tackle three main objectives. These are increasing food security, building the resilience of agricultural systems for adaptation to climate change and mitigation of GHG. As much research focuses on one of these three objectives, our understanding of how agricultural systems address these three challenges simultaneously is limited by the lack of a comprehensive evaluation tool. In order to fill this gap, we have developed a generic evaluation framework that comprises 19 indicators that we measured in a sample of 12 representative farms of the North Basse-Terre region in Guadeloupe. The evaluation revealed clear differences in the performance of these farming systems. For example, nutritional performance varied from 0 to 13 people fed per hectare, the average potential impact of climatic conditions varied from 27% to 33% and the GHG emissions balance varied from +0.8 tCO(2eq)center dot ha(-1) to +3.6 tCO(2eq)center dot ha(-1). The results obtained can guide the design of innovative production systems that better meet the objectives of climate-smart agriculture for the study region. The evaluation framework is intended as a generic tool for a common evaluation basis across regions at a larger scale. Future prospects are its application and validation in different contexts

    How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe

    No full text
    Conceptualized by the Food and Agriculture Organization in 2010, climate-smart agriculture aims to simultaneously tackle three main objectives. These are increasing food security, building the resilience of agricultural systems for adaptation to climate change and mitigation of GHG. As much research focuses on one of these three objectives, our understanding of how agricultural systems address these three challenges simultaneously is limited by the lack of a comprehensive evaluation tool. In order to fill this gap, we have developed a generic evaluation framework that comprises 19 indicators that we measured in a sample of 12 representative farms of the North Basse-Terre region in Guadeloupe. The evaluation revealed clear differences in the performance of these farming systems. For example, nutritional performance varied from 0 to 13 people fed per hectare, the average potential impact of climatic conditions varied from 27% to 33% and the GHG emissions balance varied from +0.8 tCO2eq·ha−1 to +3.6 tCO2eq·ha−1. The results obtained can guide the design of innovative production systems that better meet the objectives of climate-smart agriculture for the study region. The evaluation framework is intended as a generic tool for a common evaluation basis across regions at a larger scale. Future prospects are its application and validation in different contexts

    Co-Design and Experimentation of a Prototype of Agroecological Micro-Farm Meeting the Objectives Set by Climate-Smart Agriculture

    No full text
    Developing climate-smart agriculture is an urgent necessity to ensure the food security of a growing global population, to improve the adaptation of agricultural systems to climatic hazards, and to reach a negative carbon balance. Different approaches are being explored to achieve those objectives, including the development of new technologies for efficiency improvements to current systems and substitution of chemical inputs by bio-inputs, but the urgency of the climatic, social, and environmental context calls for more disruptive actions to be taken. We propose an approach to the design of climate-smart production systems structured in four steps: (1) diagnosis of the study region on the basis of the three pillars of climate-smart agriculture, (2) co-design of a disruptive system only based on agroecological and bioeconomic principles, (3) long-term experimentation of this system, and (4) in itinere adjustment of the system based on collected data and on-field evaluations with agricultural stakeholders. The outcome of this approach is the agroecological microfarm named KARUSMART, settled in 2018 on one hectare in the North Basse-Terre region of Guadeloupe (F.W.I.). This study presents its co-design and experimentation stages as well as the first performance results. At the end of the first two years, this microfarm showed a clear improvement in 15 of the 19 indicators used to evaluate the performance of the actual farming systems in the study region. Among the most striking results are a clear superiority in nutritional performance from 3 pers.ha−1 to 8 pers.ha−1 and a reduction in GHG balance from +2.4 tCO2eq.ha−1 to −1.1 tCO2eq.ha−1 for the study area and the microfarm, respectively. These results are promising for developing climate-smart agricultural systems and need to be consolidated further through longer-term monitoring data, the implementation of more similar systems in the study area, and the implementation of the design principles in other contexts
    corecore