105 research outputs found

    Distributed Reconstruction of Nonlinear Networks: An ADMM Approach

    Full text link
    In this paper, we present a distributed algorithm for the reconstruction of large-scale nonlinear networks. In particular, we focus on the identification from time-series data of the nonlinear functional forms and associated parameters of large-scale nonlinear networks. Recently, a nonlinear network reconstruction problem was formulated as a nonconvex optimisation problem based on the combination of a marginal likelihood maximisation procedure with sparsity inducing priors. Using a convex-concave procedure (CCCP), an iterative reweighted lasso algorithm was derived to solve the initial nonconvex optimisation problem. By exploiting the structure of the objective function of this reweighted lasso algorithm, a distributed algorithm can be designed. To this end, we apply the alternating direction method of multipliers (ADMM) to decompose the original problem into several subproblems. To illustrate the effectiveness of the proposed methods, we use our approach to identify a network of interconnected Kuramoto oscillators with different network sizes (500~100,000 nodes).Comment: To appear in the Preprints of 19th IFAC World Congress 201

    Bounding stationary averages of polynomial diffusions via semidefinite programming

    Get PDF
    We introduce an algorithm based on semidefinite programming that yields increasing (resp. decreasing) sequences of lower (resp. upper) bounds on polynomial stationary averages of diffusions with polynomial drift vector and diffusion coefficients. The bounds are obtained by optimising an objective, determined by the stationary average of interest, over the set of real vectors defined by certain linear equalities and semidefinite inequalities which are satisfied by the moments of any stationary measure of the diffusion. We exemplify the use of the approach through several applications: a Bayesian inference problem; the computation of Lyapunov exponents of linear ordinary differential equations perturbed by multiplicative white noise; and a reliability problem from structural mechanics. Additionally, we prove that the bounds converge to the infimum and supremum of the set of stationary averages for certain SDEs associated with the computation of the Lyapunov exponents, and we provide numerical evidence of convergence in more general settings

    Shaping Pulses to Control Bistable Biological Systems

    Get PDF
    In this paper we study how to shape temporal pulses to switch a bistable system between its stable steady states. Our motivation for pulse-based control comes from applications in synthetic biology, where it is generally difficult to implement real-time feedback control systems due to technical limitations in sensors and actuators. We show that for monotone bistable systems, the estimation of the set of all pulses that switch the system reduces to the computation of one non-increasing curve. We provide an efficient algorithm to compute this curve and illustrate the results with a genetic bistable system commonly used in synthetic biology. We also extend these results to models with parametric uncertainty and provide a number of examples and counterexamples that demonstrate the power and limitations of the current theory. In order to show the full potential of the framework, we consider the problem of inducing oscillations in a monotone biochemical system using a combination of temporal pulses and event-based control. Our results provide an insight into the dynamics of bistable systems under external inputs and open up numerous directions for future investigation.Comment: 14 pages, contains material from the paper in Proc Amer Control Conf 2015, (pp. 3138-3143) and "Shaping pulses to control bistable systems analysis, computation and counterexamples", which is due to appear in Automatic

    Approximations of countably-infinite linear programs over bounded measure spaces

    Get PDF
    We study a class of countably-infinite-dimensional linear programs (CILPs) whose feasible sets are bounded subsets of appropriately defined weighted spaces of measures. We show how to approximate the optimal value, optimal points, and minimal points of these CILPs by solving finite-dimensional linear programs. The errors of our approximations converge to zero as the size of the finite-dimensional program approaches that of the original problem and are easy to bound in practice. We discuss the use of our methods in the computation of the stationary distributions, occupation measures, and exit distributions of Markov~chains

    Hybrid Graph: A Unified Graph Representation with Datasets and Benchmarks for Complex Graphs

    Full text link
    Graphs are widely used to encapsulate a variety of data formats, but real-world networks often involve complex node relations beyond only being pairwise. While hypergraphs and hierarchical graphs have been developed and employed to account for the complex node relations, they cannot fully represent these complexities in practice. Additionally, though many Graph Neural Networks (GNNs) have been proposed for representation learning on higher-order graphs, they are usually only evaluated on simple graph datasets. Therefore, there is a need for a unified modelling of higher-order graphs, and a collection of comprehensive datasets with an accessible evaluation framework to fully understand the performance of these algorithms on complex graphs. In this paper, we introduce the concept of hybrid graphs, a unified definition for higher-order graphs, and present the Hybrid Graph Benchmark (HGB). HGB contains 23 real-world hybrid graph datasets across various domains such as biology, social media, and e-commerce. Furthermore, we provide an extensible evaluation framework and a supporting codebase to facilitate the training and evaluation of GNNs on HGB. Our empirical study of existing GNNs on HGB reveals various research opportunities and gaps, including (1) evaluating the actual performance improvement of hypergraph GNNs over simple graph GNNs; (2) comparing the impact of different sampling strategies on hybrid graph learning methods; and (3) exploring ways to integrate simple graph and hypergraph information. We make our source code and full datasets publicly available at https://zehui127.github.io/hybrid-graph-benchmark/.Comment: Preprint. Under review. 16 pages, 5 figures, 11 table
    corecore