851 research outputs found

    Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors

    Get PDF
    The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30 degrees C to 55 degrees C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3-310 microg l(-1)) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrate

    Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    Get PDF
    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently low levels of CO are reached. Here we study CO conversion and final CO levels in cultures of C. hydrogenoformans grown in batch cultures that were started with a 100% CO gas phase with and without removal of formed CO2. Final CO levels were 117 ppm without CO2 removal and below 2 ppm with CO2 removal. The Gibbs free energy change calculated with measured end concentrations and the detection of acetate suggest that C. hydrogenoformans shifted from a hydrogenogenic to an acetogenic metabolism

    Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation

    Get PDF
    The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2017.01341/full#supplementary-materialMetals play an important role in microbial metabolism by acting as cofactors for many enzymes. Supplementation of biological processes with metals may result in improved performance, but high metal concentrations are often toxic to microorganisms. In this work, methanogenic enrichment cultures growing on H2/CO2 or acetate were supplemented with trace concentrations of nickel (Ni) and cobalt (Co), but no significant increase in methane production was observed in most of the tested conditions. However, high concentrations of these metals were detrimental to methanogenic activity of the cultures. Cumulative methane production (after 6 days of incubation) from H2/CO2 was 40% lower in the presence of 8 mM of Ni or 30 mM of Co, compared to controls without metal supplementation. When acetate was used as substrate, cumulative methane production was also reduced: by 18% with 8 mM of Ni and by 53% with 30 mM of Co (after 6 days of incubation). Metal precipitation with sulphide was further tested as a possible method to alleviate metal toxicity. Anaerobic sludge was incubated with Co (30 mM) and Ni (8 mM) in the presence of sulphate or sulphide. The addition of sulphide helped to mitigate the toxic effect of the metals. Methane production from H2/CO2 was negatively affected in the presence of sulphate, possibly due to competition of hydrogenotrophic methanogens by sulphate-reducing bacteria. However, in the enrichment cultures growing on acetate, biogenically produced sulphide had a positive effect and more methane was produced in these incubations than in similar assays without sulphate addition. The outcome of competition between methanogens and sulphate-reducing bacteria is a determinant factor for the success of using biogenic sulphide as detoxification method.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193. Research of AS and DS is supported by a ERC grant (project 323009) of the European Union Seventh Framework Program FP7 and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio

    Microbial synthesis and transformation of inorganic and organic chlorine compounds

    Get PDF
    Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.The authors thank METAEXPLORE, funded by the European Union Seventh Framework Program (Grant No. 222625), BEBASIC-FES funds from the Dutch Ministry of Economic Affairs (Projects F07.001.05 and F08.004.01), Shell Global Solutions International BV, the ERC Advanced grant “Novel Anaerobes” (Project 323009), the SIAM Gravitation grant “Microbes for Health and the Environment” (Project 024.002.002) of the Netherlands Ministry of Education, Culture and Science, and the Netherlands Science Foundation (NWO) for funding.info:eu-repo/semantics/publishedVersio

    Comparative analysis of carbon monoxide tolerance among Thermoanaerobacter species

    Get PDF
    An anaerobic thermophilic strain (strain PCO) was isolated from a syngas-converting enrichment culture. Syngas components cannot be used by strain PCO, but the new strain is very tolerant to carbon monoxide (pCO = 1.7 × 105 Pa, 100% CO). 16S rRNA gene analysis and DNA-DNA hybridization revealed that strain PCO is a strain of Thermoanaerobacter thermohydrosulfuricus. The physiology of strain PCO and other Thermoanaerobacter species was compared, focusing on their tolerance to carbon monoxide. T. thermohydrosulfuricus, T. brockii subsp. finnii, T. pseudethanolicus, and T. wiegelii were exposed to increased CO concentrations in the headspace, while growth, glucose consumption and product formation were monitored. Remarkably, glucose conversion rates by Thermoanaerobacter species were not affected by CO. All the tested strains fermented glucose to mainly lactate, ethanol, acetate, and hydrogen, but final product concentrations differed. In the presence of CO, ethanol production was generally less affected, but H2 production decreased with increasing CO partial pressure. This study highlights the CO resistance of Thermoanaerobacter species.Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684)FCT and European Social Fund (POPH-QREN) through postdoc grant SFRH/BPD/104837/2014ERC grant (project 323009) and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO

    Co-culture of a novel fermentative bacterium, Lucifera butyrica gen. nov. sp. nov., with the sulfur reducer Desulfurella amilsii for enhanced sulfidogenesis

    Get PDF
    Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T=DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing cocultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The coculture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The coculture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach.The doctoral study program was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), organization of the Brazilian Government. Research of DS, IS-A, and AS is financed by an ERC grant (Project 323009) and the Gravitation grant (SIAM 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation.info:eu-repo/semantics/publishedVersio

    Formate Formation and Formate Conversion in Biological Fuels Production

    Get PDF
    Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production

    Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor

    Get PDF
    Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1T grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1T also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 ± 0.1 and 0.4 ± 0.02 day−1, respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes

    Anaerobic LCFA degradation: a role for non-syntrophic conversions?

    Get PDF
    For many years the focus of lipids/long-chain fatty-acids (LCFA) wastewater treatment was on technological and process developments. More recently, promising results on the anaerobic treatment of LCFA-containing wastewaters[1] widened the attention to the microbiology aspects as well. In anaerobic bioreactors, LCFA can be β-oxidized to acetate and H2 by acetogenic bacteria, in obligatory syntrophy with methanogens. Presently, 14 species have been described that grow on fatty-acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae[2]. Among these, only 4 species are able to degrade mono- and/or polyunsaturated LCFA. The reason why the degradation of unsaturated LCFA is not more widespread remains unknown. Early studies suggested that degradation of unsaturated LCFA requires complete chain saturation prior to β-oxidation[2]. Unsaturated LCFA, such as linoleate (C18:2) and oleate (C18:1), would be metabolized through a hydrogenation step yielding stearate (C18:0), then entering the β-oxidation cycle. However, this theory is inconsistent with the observed accumulation of palmitate (C16:0) in continuous bioreactors fed with oleate[1]. We hypothesize that LCFA chain saturation might be a non-syntrophic process, i.e. unsaturated LCFA can function as electron donors and acceptors, as protons released in a first β-oxidation step can be used to hydrogenate the unsaturated hydrocarbon. To test this, linoleate (C18:2), oleate (C18:1) and a mixture of stearate (C18:0) and palmitate (C16:0) were continuously fed to bioreactors with methanogenesis-active or -inhibited anaerobic sludge. In the reactors fed with linoleate and oleate, palmitate accumulated in methanogenesis-active and -inhibited bioreactors up to concentrations of approximately 2 mM and 8 mM, respectively. In methanogenesis-inhibited bioreactors fed with a mixture of saturated LCFA (stearate and palmitate) no biological activity occurred. These results suggest the occurrence of a non-syntrophic step during the degradation of unsaturated LCFA in anaerobic bioreactors. The identification of microbial communities involved in non-syntrophic linoleate/oleate to palmitate conversion will give more insights into this novel biochemical mechanism

    Characterization of an anaerobic thermophilic glycerol-degrading enrichment culture

    Get PDF
    Background: The glycerol market was totally changed by the biodiesel industry, which resulted in the production of an excess of this compound as an industrial by-product. As a consequence, the price of glycerol dropped and a huge interest in alternatives for its valorisation emerged since then. In the field of Biotechnology research, glycerol is an attractive compound for the microbial production of chemical building blocks. Objectives: The aim of this work was to investigate thermophilic anaerobic communities capable of conversion of glycerol. Methods: Thermophilic sludge from a lab-scale anaerobic reactor fed with skim milk and sodium oleate (50:50% chemical oxygen demand) was incubated at 55°C in closed bottles containing bicarbonate-buffered medium supplemented with 10mM glycerol. Periodic successive transfers of the glycerol-converting enrichment culture, combined with serial dilutions were performed. After eight generations a highly enriched, low diversity (microscopic observations and 16s rRNA DGGE profiling) microbial culture was obtained. Conclusions: The enriched culture converted glycerol mainly to methane (6mM) and acetate (7mM) within 6 days of incubation. A yet unknown organic compound was also produced. Sequencing results obtained on the Illumina platform showed the bacterial predominance of an uncultured Thermotoga species (75 % of the retrieved sequences), an uncultured Anaerobaculum species (13 %) and a close relative to Thermoanaerobacter pseudethanolicus (5 %). Isolation of the new uncultured Thermotoga and Anaerobaculum species is ongoing and their role in glycerol degradation will be assessed
    corecore