144 research outputs found

    Tunable Cavity Optomechanics with Ultracold Atoms

    Full text link
    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.Comment: 4 pages, 5 figure

    Properties of excitations in systems with a spinor Bose-Einstein condensate

    Full text link
    General theory in case of homogenous Bose-Einstein condensed systems with spinor condensate is presented for the correlation functions of density and spin fluctuations and for the one-particle propagators as well. The random phase approximation is investigated and the damping of the modes is given in the intermediate temperature region. It is shown that the collective and the one-particle excitation spectra do not coincide fully.Comment: 5 pages, 1 figur

    Shifts and widths of collective excitations in trapped Bose gases by the dielectric formalism

    Full text link
    We present predictions for the temperature dependent shifts and damping rates. They are obtained by applying the dielectric formalism to a simple model of a trapped Bose gas. Within the framework of the model we use lowest order perturbation theory to determine the first order correction to the results of Hartree-Fock-Bogoliubov-Popov theory for the complex collective excitation frequencies, and present numerical results for the temperature dependence of the damping rates and the frequency shifts. Good agreement with the experimental values measured at JILA are found for the m=2 mode, while we find disagreements in the shifts for m=0. The latter point to the necessity of a non-perturbative treatment for an explanation of the temperature-dependence of the m=0 shifts.Comment: 10 pages revtex, 3 figures in postscrip

    Robust Digital Holography For Ultracold Atom Trapping

    Full text link
    We have formulated and experimentally demonstrated an improved algorithm for design of arbitrary two-dimensional holographic traps for ultracold atoms. Our method builds on the best previously available algorithm, MRAF, and improves on it in two ways. First, it allows for creation of holographic atom traps with a well defined background potential. Second, we experimentally show that for creating trapping potentials free of fringing artifacts it is important to go beyond the Fourier approximation in modelling light propagation. To this end, we incorporate full Helmholtz propagation into our calculations.Comment: 7 pages, 4 figure

    Collisionless dynamics of dilute Bose gases: Role of quantum and thermal fluctuations

    Full text link
    We study the low-energy collective oscillations of a dilute Bose gas at finite temperature in the collisionless regime. By using a time-dependent mean-field scheme we derive for the dynamics of the condensate and noncondensate components a set of coupled equations, which we solve perturbatively to second order in the interaction coupling constant. This approach is equivalent to the finite-temperature extension of the Beliaev approximation and includes corrections to the Gross-Pitaevskii theory due both to quantum and thermal fluctuations. For a homogeneous system we explicitly calculate the temperature dependence of the velocity of propagation and damping rate of zero sound. In the case of harmonically trapped systems in the thermodynamic limit, we calculate, as a function of temperature, the frequency shift of the low-energy compressional and surface modes.Comment: 26 pages, RevTex, 8 ps figure

    Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration

    Get PDF
    Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease

    Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis, the growth of capillaries from preexisting blood vessels, has been extensively studied experimentally over the past thirty years. Molecular insights from these studies have lead to therapies for cancer, macular degeneration and ischemia. In parallel, mathematical models of angiogenesis have helped characterize a broader view of capillary network formation and have suggested new directions for experimental pursuit. We developed a computational model that bridges the gap between these two perspectives, and addresses a remaining question in angiogenic sprouting: how do the processes of endothelial cell elongation, migration and proliferation contribute to vessel formation?</p> <p>Results</p> <p>We present a multiscale systems model that closely simulates the mechanisms underlying sprouting at the onset of angiogenesis. Designed by agent-based programming, the model uses logical rules to guide the behavior of individual endothelial cells and segments of cells. The activation, proliferation, and movement of these cells lead to capillary growth in three dimensions. By this means, a novel capillary network emerges out of combinatorially complex interactions of single cells. Rules and parameter ranges are based on literature data on endothelial cell behavior in vitro. The model is designed generally, and will subsequently be applied to represent species-specific, tissue-specific in vitro and in vivo conditions.</p> <p>Initial results predict tip cell activation, stalk cell development and sprout formation as a function of local vascular endothelial growth factor concentrations and the Delta-like 4 Notch ligand, as it might occur in a three-dimensional in vitro setting. Results demonstrate the differential effects of ligand concentrations, cell movement and proliferation on sprouting and directional persistence.</p> <p>Conclusion</p> <p>This systems biology model offers a paradigm closely related to biological phenomena and highlights previously unexplored interactions of cell elongation, migration and proliferation as a function of ligand concentration, giving insight into key cellular mechanisms driving angiogenesis.</p
    • …
    corecore