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ABSTRACT

Motivated by recent observations of submesoscales in the Southern Ocean,

we use nonlinear numerical simulations and a linear stability analysis to ex-

amine the influence of a barotropic jet on submesoscale instabilities at an iso-

lated front. Simulations of the non-hydrostatic Boussinesq equations with a

strong barotropic jet (approximately matching the observed conditions) show

that submesoscale disturbances and strong vertical velocities are confined to a

small region near the initial frontal location. In contrast, without a barotropic

jet submesoscale eddies propagate to the edges of the computational domain

and smear the mean frontal structure. Several intermediate jet strengths are

also considered. A linear stability analysis reveals that the barotropic jet has

a modest influence on the growth rate of linear disturbances to the initial con-

ditions, with at most ⇠ 20% reduction in the growth rate of the most unstable

mode. On the other hand, a basic state formed by averaging the flow at the

end of the simulation with a strong barotropic jet is linearly stable, suggesting

that nonlinear processes modify the mean flow and stabilize the front.
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1. Introduction25

Submesoscales, that is horizontal scales O(0.1 � 10) km, vertical scales O(100) m and26

timescales of O(1) day, bridge the gap between the typically quasigeostrophic mesoscale and27

typically nonhydrostatic small scales where dynamics are not influenced by the Earth’s rotation.28

They have been shown to be associated with regions of enhanced vertical velocity, vorticity and29

dissipation (Boccaletti et al. 2007; Capet et al. 2008; Lévy et al. 2012; Thomas et al. 2008) and30

are known to be almost ubiquitous in the world’s oceans, particularly within the mixed layer at31

the ocean surface (McWilliams 2016). The weak vertical density gradients of the mixed layer32

and strong lateral gradients associated with ocean fronts together provide a background flow un-33

stable to a number of unforced mixed layer instabilities (Haine and Marshall 1998; Haney et al.34

2015) that may grow in the absence of external wind or wave forcing. These include submesoscale35

baroclinic instability (BCI, Fox-Kemper et al. 2008) and symmetric instability (SI, Bachman et al.36

2017). BCI results in the formation of submesoscale eddies, while SI, a hybrid of gravitational and37

inertial instabilities, can result in isopycnal-aligned, a.k.a. “slantwise”, convection cells. As both38

submesoscale BCI and SI thrive in low stratification, these instabilities can both be categorized39

as types of mixed layer instability (MLI), though this term is sometimes applied preferentially to40

describe BCI.41

Taylor et al. (2018) present a study of submesoscales in the Southern Ocean – a region for which42

comparatively little is known about submesoscales – motivated by in situ observations from the43

Surface MIxed Layer Evolution at Submesoscales (SMILES) project cruise. The study exam-44

ined the extent to which the strong currents of the Antarctic Circumpolar Current (ACC) modify45

submesoscales generated through BCI. The nonlinear evolution of a cold, dense filament in the46

ACC was analyzed using numerical simulations of the top 200 m of the water column. These47

3



simulations demonstrated that a strong eastward barotropic jet (a jet that is depth-invariant over48

the mixed layer and associated with the ACC) significantly modifies submesoscales. Specifically,49

submesoscale eddies generated through BCI are transformed into submesoscale Rossby waves:50

stable modes with upstream phase propagation. Submesoscale Rossby waves are associated with51

enhanced vertical velocity and they prevent the frontal structure from being entirely destroyed (as52

would be typical for BCI in the absence of a barotropic jet).53

This previous work raises an important open question: how does the suppression of BCI and54

modification of submesoscale eddies depend on the strength of the barotropic jet? We will ad-55

dress this question using a combination of linear stability analysis and nonlinear numerical sim-56

ulations, using a highly idealized setup representing an isolated mixed layer front colocated with57

a barotropic jet. Here we distinguish a mesoscale jet in geostrophic balance with the sea surface58

height gradient from any thermal wind shear within the mixed layer where submesoscales are most59

active, i.e., the jet is effectively barotropic and taken as independent of the front over our domain60

of interest.61

The phenomenon of barotropic control of BCI has received considerable attention in the at-62

mospheric literature. Analytic studies by various authors (Kuo 1949; McIntyre 1970; Held and63

Andrews 1983) considered BCI in the presence of a small amplitude barotropic jet. However, in64

our case it is clear that the observed jet magnitude is not small, having along-front depth-invariant65

velocity significantly in excess of the baroclinic velocity in the mixed layer (about 1.2 ms�1 and66

0.1 ms�1, respectively).67

Barotropic control of BCI was noted in numerical simulations of the atmosphere by Simmons68

and Hoskins (1978) and, later, by James and Gray (1986). James and Gray (1986) termed this69

the barotropic governor effect. A numerical study by James (1987), with constant barotropic70
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shear added to a baroclinically unstable flow, indicated that linear growth rates of BCI could be71

substantially reduced by increasing barotropic shear.72

Nakamura (1993a) verified these findings analytically using a two layer quasi-geostrophic73

model. Three piecewise constant regions of uniform potential vorticity (PV) were introduced to74

add a linear barotropic flow (or constant barotropic shear). A linear stability analysis demonstrated75

the same growth rate reduction with increased shear as seen by James (1987). In addition, the so-76

lution contained momentum flux divergence at the boundaries between the uniform PV regions.77

These discontinuities acted to reinforce the initial barotropic shear, suggesting the existence of a78

nonlinear feedback process. These nonlinear effects were examined by Nakamura (1993b) using79

a quasi-geostrophic model, which demonstrated significant convergent momentum fluxes and in-80

tensification of the barotropic jet. Each of these previous studies finds that a barotropic jet reduces81

BCI growth rates, in some cases substantially. In this paper we will show that a sufficiently strong82

barotropic jet can completely arrest submesoscale BCI.83

The organization of the paper will be as follows. Section 2 describes the problem setup and84

formulation. Section 3 introduces the results of a series of numerical simulations, performed using85

a non-hydrostatic Boussinesq governing equation solver, ‘Diablo’. In section 4, we analyze the86

linear stability of the initial conditions to the prescribed nonlinear barotropic flow. We separate the87

roles of two features of a barotropic jet – its associated shear and its effect on potential vorticity88

gradients – to quantify their individual influence on MLI. Finally, we evaluate the linear stability of89

a basic state composed of an along-front average taken from the end of the numerical simulations,90

demonstrating that BCI has been arrested in the case with the strongest barotropic jet.91
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2. Problem set-up92

We define an isolated front using an initial buoyancy profile of the following form93

b0 = Db tanh

 
y� Ly

2
L f

!
+N2z, (1)

where buoyancy is defined relative to an arbitrary constant density, Db is the frontal strength, Ly the94

domain width, L f the frontal width and N2 a constant stratification. The front is in thermal-wind95

balance with down-front velocity given by96

uW =� Db
f L f

sech2

 
y� Ly

2
L f

!✓
z� Lz

2

◆
, (2)

where f is the Coriolis parameter and Lz the domain height. Note that in the SI literature, this97

velocity is called the “geostrophic” velocity. Here, as other flow components are also largely98

geostrophic, the term “thermal wind velocity” is preferred. This setup is represented schematically99

in figure 1. An additional barotropic (i.e. independent of z) jet of the form,100

uBT = DUBT cos

 
y� Ly

2
Ly
2

p

!
, (3)

is added to the thermal wind.101

Associated with the barotropic jet and thermal wind are cross-frontal variations in shear and102

potential vorticity. We denote the potential vorticity associated with the barotropic jet as qBT =103

( f k̂+—⇥uBTi) ·—b =

✓
f k̂+ 2p

Ly
DUBT sin

✓
y� Ly

2
Ly
2

p
◆◆

N2, and, for the thermal wind, qW = ( f k̂+104

—⇥uW i) ·—b, respectively, taking care to note that q = qBT +qW � f N2 6= qBT +qW .105

We consider an idealized representation of the ocean mixed layer with stress-free rigid lids at106

z = H, representing the ocean-atmosphere interface, and at z = 0, representing the base of the107

mixed layer. The buoyancy field is decomposed according to108

bT = b(x,y,z, t)+M2y, (4)
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where bT is the total buoyancy, and M2 = Db/Ly. Periodic boundary conditions are applied to u109

and b in both horizontal directions. The periodic boundary conditions on b imply that the buoyancy110

change across the domain, Db, is constant in time. However, since we initialize with a localized111

front, this condition will not restrict the evolution of the front until buoyancy perturbations spread112

across the domain width.113

3. Numerical simulations114

a. Setup115

We examine the influence of a barotropic jet on BCI of an isolated front by performing four116

three-dimensional simulations, varying the amplitude of the barotropic jet in each case such that117

DUBT = 0,0.1,0.3 and 0.6 m s�1. Parameter choices for the front are motivated by the observations118

made during the SMILES cruise. Specifically, we take Db = 2.5⇥ 10�4 m s�2, f = �1.1875⇥119

10�4 s�1 and L f = 1500 m. The top panel of figure 2 shows the cross-front buoyancy profile at120

the top surface, z = 120 m. The second panel of figure 2 shows an example of surface uW , uBT121

and u for a barotropic jet of strength DUBT = 0.6 ms�1. Finally, small amplitude, random white122

noise perturbations of amplitude 1⇥ 10�7 m s�1 are added to seed instability. The bottom two123

panels of figure 2 show the cross-front shear and potential vorticity gradients associated with the124

thermal wind (orange) and barotropic jet (blue), respectively (again for an example with DUBT =125

0.6m s�1).126

Our domain height, Lz = 120 m, corresponds to the observed mixed layer depth, and the domain127

width, Lx = Ly = 50 km, is chosen to ensure the domain is large enough to capture several mul-128

tiples of the fastest growing BCI mode (see section 4). Thus, the simulations allow merging and129

interaction of submesoscales and associated upscale energy transfer. The large horizontal extent130
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will be particularly important in ascertaining whether a given barotropic jet strength is sufficient131

to explain confinement of submesoscale activity to a region close to the front. Note that while the132

imposed vertically-invariant jet is barotropic in this setting, a low-mode mesoscale baroclinic jet133

with a vertical scale much deeper than the mixed layer depth would be similarly represented in the134

context of mixed layer submesoscales. Finally, we began each simulation with N2 = 0.135

Simulations are performed using ‘Diablo’ which solves the non-hydrostatic, Boussinesq govern-136

ing equations (Taylor 2008). A pseudo-spectral method is used in both horizontal directions and a137

second-order finite difference method is applied in the vertical direction. Timestepping is imple-138

mented using an implicit Crank-Nicolson scheme for viscous terms and an explicit low-storage,139

third order Runge-Kutta scheme for all other terms. The simulations discussed have 128 vertical140

grid-points and 512 horizontal grid-points in both x and y directions, implying vertical resolu-141

tion of about 1 m and horizontal resolution of about 100 m. As shown in Bachman and Taylor142

(2014), this horizontal resolution is sufficient to adequately resolve SI in a layer of this depth.143

The horizontal resolution being much coarser than the vertical resolution, it is necessary to define144

anisotropic eddy viscosities, nH and nV , where subscripts H and V denote horizontal and vertical145

quantities, respectively. Values of nH = 1 m2s�1, and nV = 5⇥ 10�5 m2s�1 were used, ensuring146

that, throughout each simulation, grid-spacing was less than approximately twice the Kolmogorov147

scale in both horizontal or vertical directions,148

hH,V =

 
n3

H,V

e

! 1
4

, (5)

where n is the eddy viscosity and e is the viscous dissipation rate of kinetic energy calculated149

directly from the simulations. The diffusivity used in the buoyancy equation matches the viscosity,150

i.e. kH = nH and kV = nV . The eddy viscosity and diffusivity can be interpreted as being those151

associated with unresolved turbulence in the mixed layer, with the choice of Prandtl number (Pr =152
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n/k) consistent with this interpretation. Constant viscosity and diffusivity were chosen to simplify153

the linear stability analysis and analysis of the numerical simulations.154

b. General description155

Here, we begin by describing the general features of the numerical simulations. As will be156

shown, all simulations contain an initial period of SI that is relatively insensitive to the presence157

of the barotropic jet, followed by a period of BCI and nonlinear evolution where the barotropic jet158

has a much stronger influence. A detailed description of the flow during the SI and BCI phases159

will be given below in sections c and d, respectively.160

Figure 3a shows the evolution of the domain-averaged eddy kinetic energy, EKExyz
=161

1
2(u

02 + v02 +w02)
xyz

, where (·)xyz
denotes a volume average, and primes denote departures from a162

horizontal mean. The case with DUBT = 0.6 ms�1 is closest to the observed barotropic jet strength163

(the full jet amplitude being 2DUBT = 1.2 ms�1). All simulations begin with a period of EKExyz
164

growth, from 1.5 to 1.8 days, associated with SI and with very little variation between simulations165

with different barotropic jet strengths.166

In all cases, SI is followed by inertial oscillations with a period of approximately 2p/| f | ⇡167

14.5 hours. Inertial oscillations were also observed following SI in Taylor and Ferrari (2009),168

while Thomas et al. (2016) found that inertial oscillations modulate the growth rate associated with169

SI. Following these oscillations, each simulation experiences a second period of growth, beginning170

at t = 5� 6 days. In the case with DUBT = 0 (red line), the EKExyz increases until the end of the171

simulation, consistent with sustained conversion of potential energy into eddy kinetic energy (Fox-172

Kemper et al. 2008) and an frontal width (Fox-Kemper et al. 2011; Callies and Ferrari 2017a). In173

contrast, when DUBT = 0.6 ms�1, EKExyz saturates at about t = 7.5 days before decaying in the174

late stages of the simulation.175
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The two phases of instability can also be distinguished through the domain-averaged root mean176

square (rms) vertical velocity,
⇣

w02xy⌘1/2z

(see figure 3b). A first peak occurs in all simulations177

at about t = 1.5 days, during the brief period of SI, followed by a second peak at about 7 days178

during a period of BCI. After the second local maximum, the rms vertical velocity decays slowly179

throughout the remainder of the simulations.180

Horizontal slices of the vertical velocity near the lower boundary (z= 5 m) and surface buoyancy181

at the top surface (z = 120 m) are shown in figures 4 and 5, respectively. Changes to the buoyancy182

at early times are difficult to see and are excluded from figure 5. After 2.7 days in the simulation183

with DUBT = 0 (see figure 4a), the vertical velocity exhibits regularly spaced bands, about 500 m184

in width, independent of the along-front direction and characteristic of SI. By 3.8 days along-front185

variations in the vertical velocity first become visible. The vertical velocity is similar in the case186

with DUBT = 0.6 ms�1 during the SI phase.187

At t = 7 days, breaking baroclinic waves are visible in the vertical velocity and buoyancy fields188

(see figures 4c and 5a). Differences between the simulations with DUBT = 0 and DUBT = 0.6 ms�1
189

are now apparent, with somewhat more regular baroclinic waves in the latter case. In both cases,190

narrow bands of upwelling appear on the edges of the baroclinic waves.191

At later times, the simulations with DUBT = 0 and DUBT = 0.6 ms�1 become drastically differ-192

ent. After 18 days, in the case with DUBT = 0.6 ms�1, the front remains intact and confined to193

a region within about 6 km of the original frontal center (see figure 5d). The vertical velocity is194

similarly confined, with the largest vertical circulations near the bottom of the domain appearing195

on the warm side of the front at approximately y = 35 km (see figure 4f).196

In contrast, when DUBT = 0 coherent submesoscale eddies develop and merge, with larger scale197

eddies dominant in the surface buoyancy by 11 days (not shown). This results in buoyancy vari-198

ations stretching much farther away from the original location of the front center, y = 25 km.199
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Eddy merging continues until, by 18 days, buoyancy variations have reached the boundaries of200

the domain, particularly on the cold side, and what remains of the original front has become very201

convoluted and extended in length (see figure 5c).202

c. Symmetric Instability (SI)203

The initial condition, with N2 = 0, has regions where the potential vorticity takes the opposite204

sign from the Coriolis parameter, i.e. f q < 0, hence meeting the criterion for symmetric instability205

(SI) (Hoskins 1974). The most unstable mode of inviscid SI is characterized by along-isopycnal206

motion in the cross-front, vertical plane (Stone 1966; Taylor and Ferrari 2009). Figure 6a shows207

isopycnals (dashed) and vertical velocity (color) in the simulation with DUBT = 0.6ms�1, consis-208

tent with mature SI circulations (compare with figure 3a in Stamper and Taylor (2017) or figures209

7 and 9 of Haney et al. (2015)).210

In all simulations two distinct steps develop in the surface buoyancy that are approximately211

equidistant from the center of the front, each with a similar magnitude of change in buoyancy (see212

figure 6b). These steps are reminiscent of the steps that appeared in the simulations of Stamper and213

Taylor (2017), where they were attributed to frontogenesis induced by SI cells. For DUBT = 0, the214

main difference between the simulations of Stamper and Taylor (2017) and here is the presence of215

a variable lateral buoyancy gradient in the initial conditions. This constrains SI and its associated216

density steps to the center of the domain in y.217

There is little variation in the growth rate of SI as DUBT is varied, evidenced by the similar eddy218

kinetic energy evolution for each simulation during the SI phase (see Fig. 3). However, there are219

small changes to the growth rate associated with SI due induced by the barotropic jet. The addition220

of a barotropic jet creates an asymmetry in the growth of SI on the warm (anticylonic) and cold221
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(cyclonic) sides of the front. This can be shown by briefly re-visiting the linear stability analysis222

of Stone (1966) and Stamper and Taylor (2017), but with the addition of a barotropic jet.223

For simplicity, we will take the horizontal buoyancy gradient and the horizontal shear to be224

constant on the scale of the growing perturbations. Although not strictly valid here, this assumption225

greatly simplifies the analysis. Taking normal mode perturbations of the form226

(u0,v0,w0,b0,f 0) = (û, v̂, ŵ, b̂, f̂)ei(kx+`y+mz)+st , (6)

linearizing, and eliminating variables algebraically from the governing equations, the growth rate227

for SI modes (with k = 0) is228

s =

 
M4

N2 � f 2 �N2
✓
`

m
� M2

N2

◆2

+ f
∂uBT

∂y

! 1
2

+n(`2 +m2). (7)

This suggests that SI has larger growth rates in regions of strong anticyclonic vorticity i.e. where229

zBT = (—⇥uBTi) ·k = �∂uBT
∂y > 0 in the Southern Hemisphere. Noting from figure 2 that the230

relative vorticity is anticyclonic for y > Ly/2, we anticipate that this region will be more unstable231

to SI. We define the following split of the EKE between the two halves of the domain in the y232

direction,233

EKExyz
split = EKExz

y> Ly
2
�EKExz

y< Ly
2
, (8)

where, for example, EKExz
y< Ly

2
= 1

LxLyLz

R Lx
0
R Lz

0
R Ly/2

0 (u02 + v02 +w02)dydzdx. We anticipate that234

EKExyz
split > 0, with more asymmetry for larger DUBT. This is supported by the simulation data.235

Figure 6c shows EKExyz
split for each simulation during symmetric growth, indicating significantly236

higher positive values of EKExyz
split for higher values of DUBT. In other words, SI is enhanced237

in regions of anticyclonic barotropic relative vorticity, zBT = (—⇥uBTi) ·k = �∂uBT
∂y > 0 in the238

Southern Hemisphere.239
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d. Baroclinic Instability (BCI)240

The second period of EKExyz growth beginning at about 5 days (see figure 3a) is much more241

strongly influenced by the barotropic jet than that during the SI phase. This second period of242

growth is associated with a positive volume-averaged buoyancy flux, b0w0xyz, indicative of BCI243

(Stone 1972) (see figure 7a). The buoyancy flux is relatively unaffected by the barotropic jet until244

about day 6, while after about day 8 the buoyancy flux is generally smaller in simulations with245

stronger barotropic jets. This implies a suppression of the extraction of potential energy by BCI in246

cases with strong barotropic jets. By the end of the simulations the buoyancy flux remains elevated247

for the DUBT = 0 case, while the buoyancy flux is nearly zero for DUBT = 0.6 m s�1.248

The influence of the barotropic jet on the buoyancy flux (and hence the conversion of potential249

to kinetic energy, per Fox-Kemper et al. (2008)) is also reflected in the mean vertical stratification.250

Figure 7b, shows the domain-averaged vertical buoyancy gradient, N2xyz
= ∂b/∂ z

xyz
. There is a251

small increase in N2xyz
during the growth of SI, with little variation between the simulations. In252

contrast, there is a second, much more significant increase in N2xyz
associated with the onset of BCI253

at around 6.5 days in each case. After about 8 days the simulations with DUBT > 0.1 ms�1 diverge254

significantly from the case with DUBT = 0. Restratification slows towards the latter stages of these255

simulations, with N2xyz
becoming steady in the DUBT = 0.6 ms�1 case after around 15.5 days.256

This demonstrates that the arrest of BCI in this case has halted mixed layer restratification. BCI in257

the highest jet strength simulations has been unable to extract as much energy from the potential258

energy associated with tilted isopycnals at the front. This is also reflected in the evolution of the259

integrated potential energy, EP(t)=
RRR

zb0 dxdydz (see figure 7c). At 27 days, there is significantly260

more potential energy remaining in the system in the case with the strong barotropic jet, DUBT =261

0.6 ms�1, nearly 5 times that for the case with no barotropic jet, DUBT = 0.262
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During the late stages of BCI and the subsequent nonlinear evolution in the simulation with the263

strongest barotropic jet (DU = 0.6ms�1), the character of the submesoscale structures is dramat-264

ically altered (compare figures 5c and 5d). In this case, the resulting surface buoyancy profile265

has disturbances confined between approximately y = 35 km on the warm side of the front and266

y = 15 km on the cold side. At y = 15 km a sharp front persists in the surface buoyancy.267

In simulations with large amplitude barotropic jets, the front and submesoscale disturbances268

remain confined to a narrower region around the original frontal location than in the case with no269

barotropic jet. Figure 8 shows Hovmöller plots of buoyancy, averaged in x and z, as a function270

of time and cross-front distance (y). In the case without a barotropic jet, DUBT = 0, variations in271

the surface buoyancy extend across the full cross-frontal extent of the domain by about day 20.272

In contrast, the surface fronts for the DUBT = 0.3 ms�1 and DUBT = 0.6 ms�1 cases are more273

confined. The DUBT = 0.6 ms�1 simulation, in particular, appears to have reached an approximate274

equilibrium with little change in the frontal width from approximately day 20 onwards.275

Vertical circulations are similarly confined to a relatively narrow region around the front in the276

simulations with stronger barotropic jets. Figure 9 shows the x-averaged root mean square vertical277

velocity, w02x1/2
. The top two panels, at the time of the second local maxima of full domain278

root mean square vertical velocity (as can be seen in figure 3b), demonstrate that high vertical279

velocities associated with BCI occur near the center of the front. The values of w02x1/2
at the280

center of the front are an order of magnitude larger than the domain-averaged root mean square281

vertical velocities,
⇣

w02xy⌘1/2z

. In the DUBT = 0.6 ms�1 case (figure 9b) we see that vertical282

velocities are already more confined in y at this time compared to the DUBT = 0 case, while the283

maximum w02x1/2
is about 50% larger in figure 9b than in figure 9a.284

The lower two panels of figure 9 show w02x1/2
much later in the simulations, at t = 18 days.285

By this point the degree of cross-frontal confinement is much more pronounced, with the DUBT =286
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0.6 ms�1 case having w02x1/2
confined between y = 15 km and y = 35 km, while, in the case with287

DUBT = 0, w02x1/2
has stretched to fill almost the entire width of the domain.288

The horizontally averaged along-front velocity, uxz, shows evidence of jet intensification at289

18 days in the DUBT = 0.6 ms�1 case. Figure 10a demonstrates that the jet magnitude has in-290

creased at the center of the front, y = 25 km, while decreasing somewhat at the flanks. The291

barotropic velocity at the center of the front has increased by about 7% compared to the initial292

conditions. The cumulative result of these areas of jet weakening and strengthening is a sharpen-293

ing of the jet, i.e. the absolute magnitude of barotropic shear has increased between y ⇡ 20 km and294

30 km (see the red shaded portion of figure 10b).295

This increase in shear is crucial in explaining the halting of baroclinic growth; increased shear296

near the front implies that BCI will be more influenced by the jet, with instabilities tending to be297

further deformed and tilted by the shear. These tilted modes will be prevented from attaining the298

same structure as the fastest growing mode that would be present in the absence of strong shear.299

The intensification of the jet could help explain why, during the late stages of the DUBT = 0.6 ms�1
300

simulation, we see stabilization of BCI and the cross-frontal confinement of baroclinic modes.301

Another mechanism to describe jet strengthening is the cross-front horizontal shear production,302

HSPx ⌘�u0v0x ∂ux

∂y , a term resulting from the eddy kinetic energy budget with Reynolds averaging303

applied in the x direction only. The depth-averaged HSP at the time when growth of EKExyz
304

appears to saturate in the DUBT = 0.6 ms�1 case, t = 7.5 days, is shown in figure 11. We see that305

the minimum in HSPx
z increases in magnitude with increasing jet strength, DUBT, and is focused306

on the center of the front. The connection between HSP and jet strength will be expanded upon in307

the following section.308

4. Linear stability analysis309
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Here, we analyze the linear stability of the initial conditions described above. This is done310

by timestepping the non-hydrostatic Boussinesq equations, linearized about a basic state with311

arbitrary y,z dependence. Perturbations to the basic state are expanded using a Fourier transform312

in x,313

(u0,v0,w0,b0,f 0) = Re
h
(û, v̂, ŵ, b̂, f̂)eikx

i
, (9)

where k is a prescribed wavenumber in the x-direction and variables denoted with a hat are func-314

tions of y,z and t. At t = 0, the variables denoted with a hat are initialized with small amplitude315

random noise of the form:316

û(y,z, t = 0) = AÂ
k

Â
m

eily+imz+f , etc., (10)

where A is an arbitrary complex amplitude and f is a random phase shift. For each wavenumber317

k, we then timestep the linearized governing equations, neglecting any nonlinear terms of the318

form a0b0, where primes denote perturbations from the initial conditions, until they converge to319

the fastest growing mode for each wavenumber. Specifically, we timestep the linearized equations320

until the growth rate,321

si(k) =
1

2(ti � ti�1)
log

 
EKEyz

i (k)
EKEyz

i�1(k)

!
, (11)

is approximately constant in time, where i denotes the timestep. For each timestep, we calculate322

the mean and standard deviation of the growth rates, si, over the past NC timesteps. For a chosen323

number of timesteps, NC, and convergence threshold, dC, we determine that the growth rate has324

converged at timestep i and wavenumber k if325
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i
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1
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where dC is a small parameter. In other words, we require that the standard deviation is no more326

than dC times larger than the mean growth rate over the last NC timesteps.327

All parameters are kept the same as described in section 3a, except N2. Having an analytic form328

for SI in the inviscid case and noting that the growth rate of SI was nearly identical across all sim-329

ulations, we are instead interested in predicting BCI growth rates. With this in mind, we take the330

initial stratification to be N2 = 3⇥10�6 s�2 such that f q � 0 everywhere in the domain, ensuring331

stability with regard to SI. Note that the basic state does not include the inertial oscillations that332

appear in the simulations after the SI phase.333

The viscosity and diffusivity applied to the perturbations match those used in the numerical334

simulations, specifically nH = 1 m2s�1, nV = 5⇥10�5 m2s�1, and Pr = n
k = 1. Here the number335

of grid-points is Ny = 150 and Nz = 50 in the y and z directions, respectively. We use a fixed336

timestep of 150 s. The time averaging interval required for achieving convergence is chosen to be337

10 days (NC = 5760) with the growth rate tolerance chosen to be 1% of the standard deviation of338

the growth rate i.e. dC = 0.01. Although the time required to reach a converged state varies from339

one case to another, in all cases the growth rate achieved the demanded tolerance over the 10 day340

averaging window before t = 70 days.341

Figure 12 shows the growth rate associated with the most unstable modes for barotropic jets342

strengths DUBT = 0,0.1,0.2,0.3,0.4,0.5 and 0.6 ms�1. For DUBT = 0, the maximum growth rate343

occurs for a wavelength l = 2pk = 9 km. For the next two increases in barotropic jet strength,344

DUBT = 0.1 and 0.2 ms�1, the maximum growth rate decreases and the overall growth rate curve345

flattens. This trend reverses for further increases in DUBT, with the maximum growth rate once346

again increasing. However, for the barotropic jet strengths considered, the maximum growth rate347

never quite recovers to that for the simulation with no barotropic jet added (DUBT = 0). The348

maximum growth rate with DUBT = 0.6 ms�1 is 10% lower than that with DUBT = 0 ms�1.349
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The dependence of the growth rate on the barotropic jet is qualitatively different than what350

was reported in James (1987) and Nakamura (1993a) e.g. see figure 5 of James (1987). They351

considered constant barotropic shear and observed a monotonic reduction in maximum growth rate352

with increasing barotropic shear. In addition, they reported a shift of the growth rate maximum353

to larger along-front wavelengths with increased barotropic shear. While this indeed appears to354

be the case for the first two jet strengths DUBT = 0.1 and 0.2 ms�1, these trends reverse for the355

higher jet strengths considered here. Unlike James (1987) and Nakamura (1993a), the imposed356

barotropic jet in our case has non-constant shear and associated variations in potential vorticity357

gradients. As will be shown below, these have competing influences on submesoscale BCI.358

To see the influence of horizontal shear on BCI, it is illustrative to look at the structure of the359

fastest growing modes. Figure 13 shows contours of buoyancy perturbations with l = 9 km from360

the cases with DUBT = 0 and DUBT = 0.6 ms�1 at the top of the domain (z = 120 m). These361

contours show that baroclinic modes are centered on the cold side of the front, with y < 25 km,362

and form a boomerang-like shape. In the DUBT = 0 case the boomerang shape is less prominent,363

caused only by the horizontal shear arising from the thermal wind. The boomerang shape of the364

modes is more pronounced when DUBT = 0.6 ms�1 at the top surface of the domain where the365

additional shear from the barotropic jet further deforms the baroclinic modes.366

The deformed baroclinic modes have a significant affect on the cross-front momentum flux.367

The deformation of the baroclinic mode into a rightward-oriented boomerang, as seen in figure368

13b, results in negative cross-front momentum fluxes, u0v0x < 0, on the warm side of the front369

(y > 25 km) and positive cross-front momentum fluxes, u0v0x > 0, on the cold side of the front (y <370

25 km). The net result is a convergence of cross-front, horizontal momentum towards the center371

of the front at y = 25 km. This convergence of momentum results in decreased horizontal shear372

production associated with the barotropic jet, HSP ⌘ �u0v0x duBT x
dy , illustrated by the barotropic373
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jet strengthening seen in the simulation with DUBT = 0.6 ms�1 (see figure 10). This is the same374

mechanism of momentum transfer as that induced by ‘banana-shaped’ eddies, which are known375

to be responsible for meridional transfer of momentum at synoptic scales in the atmosphere (as376

discussed, for example, by Marshall and Plumb (2008), see their figure 8.14).377

Figure 14a shows, for each barotropic jet strength, with l = 9 km, a decomposition of the eddy378

kinetic energy budget associated with the most unstable modes into the three most significant379

contributions; the buoyancy flux, b0w0xz (green), the horizontal (barotropic) shear production, HSP380

(blue), and the geostrophic shear production, GSP ⌘ �u0w0x dux
dz (orange). Each term has been381

normalized by the mean eddy kinetic energy, EKExz. From DUBT = 0 to 0.2 ms�1 we see that the382

GSP increases, while the HSP and buoyancy fluxes decrease. Negative HSP indicates a transfer383

of energy from eddy kinetic energy to the kinetic energy associated with the barotropic jet. This384

pathway becomes more effective with increased barotropic jet strength (up to DUBT = 0.2 ms�1)385

while the changes in buoyancy fluxes and GSP approximately cancel one another out.386

For further increases in barotropic jet strength, DUBT > 0.2 ms�1, the trends in geostrophic shear387

production and buoyancy fluxes reverse. The buoyancy fluxes increases more rapidly than the388

geostrophic shear production decreases. Horizontal shear production stays approximately constant389

for further increases in jet strength, DUBT > 0.2 ms�1. Overall the increase in growth rate for390

increasing jet strength, DUBT, appears to be driven predominantly by increases in the buoyancy391

flux.392

a. Effective b393

Our aim in this subsection is to isolate the effect of the potential vorticity gradient associated394

with the horizontally sheared barotropic jet from the horizontal shear production. To do this, we395

remove explicit advection associated with the barotropic jet but retain its influence on the potential396
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vorticity by modifying the Coriolis parameter such that397

f = f0 +
Z y

Ly/2
beff dy0, (13)

where f0 is the usual f -plane Coriolis parameter and398

beff =�d2uBT

dy2 . (14)

With uBT given by the cosine jet above, equation 3, f is399

f = f0 �
duBT

dy
. (15)

We note that potential vorticity of the original initial conditions, with f = f0 and u = uW +uBT,400

can be written as,401

q = ( f0k+—⇥u) ·—b =

✓✓
f0 �

duBT

dy

◆
k+—⇥ (u�uBTi)

◆
·—b. (16)

If we instead take f = f0 � duBT
dy and u = uW i.e. with the barotropic jet absent from the initial402

velocity field, but an additional beff term included in f , then potential vorticity associated with the403

initial conditions remains exactly as in equation 16. These new initial conditions and modified404

Coriolis parameter, f , then allow us to capture the contribution to the potential vorticity from the405

barotropic jet whilst eliminating advection and horizontal shear production associated with the406

barotropic jet.407

Note that our approach is different from simply removing the advection terms involving the408

operator uBT ·— from the momentum equations. Doing so would leave a term, vduBT/dy, in the x-409

momentum equation while uBT would not appear in the y-momentum equation. This choice would410

result in a jet able to transfer energy to and from the growing perturbations through horizontal411

shear production. Instead, our approach effectively adds an extra term, �uduBT/dy, to the y-412

momentum equation. While arguably less physical, this approach eliminates the shear production413
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term associated with the barotropic jet from the perturbation energy budget. As a result, uBT does414

not appear in the perturbation energy equation, and instead the perturbations are modified by the415

same potential vorticity gradient that would be induced by the barotropic jet.416

We repeat the linear stability analysis described above with this new initial velocity profile,417

u = uW , and additional beff term added to the Coriolis parameter, f . We vary the magnitude of beff418

by matching to the PV effect of DUBT = 0,0.1,0.2,0.3,0.4,0.5 or 0.6 ms�1. Figure 15 shows the419

resulting growth rate for each magnitude of beff. In contrast to the full barotropic jet cases we now420

see a monotonic increase in maximum growth rate as we increase DUBT. The DUBT = 0.6 ms�1
421

case has a growth rate 12% higher than the DUBT = 0ms�1 case. There is also a shift to smaller422

wavelengths as we increase DUBT, with the fastest growing wavelength moving from l = 9 km423

for DUBT = 0 to l = 8 km for DUBT = 0.6 ms�1.424

Figure 14b shows the same energy budget as figure 14a, but now with beff replacing the425

barotropic jet. The trends in each of these terms are now monotonic as DUBT increases. Buoy-426

ancy fluxes and horizontal shear production increase as DUBT increases, while geostrophic shear427

production decreases. It is unclear what it is, intrinsically, about the inclusion of the effective b428

term that drives the increase in growth rate. Since our beff approach has the effect of modifying the429

potential vorticity while eliminating the horizontal shear production associated with the barotropic430

jet, the distribution of potential vorticity appears to play an important role.431

Figure 16 compares the maximum growth rates between two sets of linear stability calculations;432

with a barotropic jet (orange crosses) and with an effective b term (blue crosses). For compari-433

son, the maximum growth rate without a barotropic jet and with a constant Coriolis parameter is434

indicated with a dashed line. When an effective b term is present, the maximum growth rate in-435

creases with increasing DUBT, while the maximum growth rate decreases with DUBT when with a436

barotropic jet. This result implies that the effects of barotropic shear and PV gradient sign changes437
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associated with a barotropic jet oppose one another, with increased barotropic shear resulting in438

decreased growth rates while modulations of the PV gradient associated with beff increase growth439

rates. There is some evidence that the reduction in growth rate in the case with a barotropic jet440

saturates for DUBT > 0.4ms�1, while the maximum growth rate continues to increase as a function441

of DUBT with beff.442

b. Linear stability of final state443

As seen in Figure 16, the addition of a barotropic jet reduces the maximum growth rate by about444

20% at most. This suggests that the saturation and confinement of submesoscale disturbances445

in the simulations with a strong barotropic jet cannot be explained by the barotropic governor446

acting on small amplitude perturbations to the initial conditions. To analyze the influence of the447

barotropic jet on the stability of the front at the end of the numerical simulations, we repeated448

the linear stability analysis with initial conditions formed by averaging the final state from the449

simulation with DUBT = 0.6 ms�1 in the along-front (x) direction. Viscosity, spatial resolution,450

timestep and convergence parameters were the same as described in section 4.451

Three variations of the linear stability analysis were performed. The first case uses a basic452

state consisting of the x-averaged buoyancy from the simulation with the idealized thermal wind453

and barotropic velocity components as in equations 2 and 3 (labelled ‘idealized u’). In the second454

case, the basic state consists of the x-averaged velocity and buoyancy from the end of the numerical455

simulations (labelled ‘computed u’). Finally, the third case has a basic state consisting of the x-456

averaged barotropic velocity and buoyancy from the numerical simulations, but with an idealized457

baroclinic component of the velocity as in equation 2 (labelled ‘computed uBT (balanced)’). For458

comparison, the maximum growth rate associated with the initial conditions is shown as a red459

curve, which is positive (unstable) for all wavelengths shown. In contrast, the ‘idealized u’ case460
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shows positive growth only for wavelengths l = 9�14 km (orange), while the last two cases do461

not have any growing modes for the wavelengths considered. The green curve confirms that the462

basic state consisting of x-averaged buoyancy and velocity from the end of the simulation with463

DUBT = 0.6 ms�1 is indeed stable. Further, the blue curve indicates that stabilization of the basic464

state can be achieved without modification of the initial baroclinic velocity.465

The difference between the ‘computed u’ and ‘idealized u’ cases is particularly interesting. The466

fact that growth rates have been vastly reduced in the idealized u case (orange) when compared467

with growth rates from the initial conditions (red) indicates that changes to the mean buoyancy,468

including variations in the structure of the front (including frontal strength and restratification),469

have a substantial impact on the linear stability of the flow. Further, using the x-averaged velocity470

field from the numerical simulation reduces growth rates (green), indicating that the full stability471

of the flow is sensitive to these modest changes in the velocity field, including strengthening of the472

barotropic jet.473

Figure 18 shows the decomposition of the growth rate into contributions from the buoyancy flux,474

geostrophic shear production and barotropic shear production terms as for figure 14. The three475

panels indicate results from; the initial conditions (left), computed b and idealized u (middle) and476

computed b and u (right). We see that the geostrophic shear production and buoyancy flux are477

vastly reduced between the left hand panel and the middle, consistent with reduced growth rates478

of BCI. An evaluation of the Charney-Stern-Pedlosky stability criteria indicates that the necessary,479

though not sufficient, conditions for instability are always satisfied in all cases shown in Fig. 17,480

although it is apparent that both ‘computed u’ cases are in fact (marginally) stable. The right hand481

panel indicates that all energetic pathways have been effectively shut down in this late stage of the482

simulation, with each term now approximately zero.483
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5. Summary and Conclusions484

Motivated by observations of a front in the Southern Ocean, this paper presents the nonlinear485

evolution of submesoscale instability at an isolated front with a co-located barotropic jet of varying486

amplitude. Beginning with an unstratified mixed layer, N2 = 0, the initial conditions chosen were487

unstable to both SI and BCI. We find SI growth rates similar to those predicted with Ri = 0.25,488

and interpret this as being due to an initial adjustment towards Ri = 0.25 caused by small scale489

instability resulting from the initial small amplitude random noise added to the initial conditions.490

Though, in a domain-averaged sense, SI growth rates are similar for each barotropic jet strength,491

SI has higher growth rates on the warm side of the front, particularly for higher barotropic jet492

strength. This reflects the larger linear growth rate predicted for SI in regions of strong anticyclonic493

barotropic relative vorticity. As in Stamper and Taylor (2017), steps form in the cross-front surface494

buoyancy profile near the center of the front.495

BCI begins at approximately the same time for each barotropic jet strength. However, as time496

evolves, the eddy kinetic energy continues to grow in the case with no barotropic jet (DUBT = 0),497

while it decays at late times in the case with strongest barotropic jet (DUBT = 0.6 ms�1). In the498

case with the strongest jet (representing the closest match with the barotropic jet observed during499

the SMILES cruise) the final state retains a sharp front where the buoyancy perturbations and large500

rms vertical velocity are confined. This contrasts strongly with the case with no barotropic jet, in501

which strong baroclinic eddies persist at late times and propagate to the domain boundaries. Thus,502

the addition of a strong barotropic jet allows for the equilibration of submesoscale disturbances at503

the front.504

In cases with a barotropic jet, during the early stages of BCI, there is pronounced negative505

horizontal shear production (HSP) near the center of the front. HSP increases in magnitude with506
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increasing barotropic jet strength. Such negative horizontal shear production, associated with the507

flux of kinetic energy from the perturbations to the barotropic jet, coincides with the strengthening508

of the barotropic jet and barotropic shear for the largest initial barotropic jet strength, DUBT =509

0.6 ms�1.510

To gain a broader understanding of the influence of the barotropic jet, we conducted a linear sta-511

bility analysis of a barotropic jet superposed on an isolated front. The influence of the barotropic512

jet on the growth rate of the most unstable mode is modest. The maximum growth rate for the513

strongest barotropic jet strength considered, DUBT = 0.6 ms�1, is ⇠ 10% smaller than that for514

DUBT = 0. However, the maximum growth rate is a non-monotonic function of the barotropic515

jet strength; initially decreasing for DUBT = 0.1� 0.2 ms�1 and increasing with subsequent in-516

creases in DUBT. This result runs counter to work by James (1987) and Nakamura (1993a) which517

showed monotonic growth rate changes with barotropic shear increases. One explanation for this518

difference is that our more complicated initial conditions introduce new physical processes to the519

problem.520

To separate the influence of horizontal barotropic shear and potential vorticity (PV) gradients521

on the stability of the front, we analyzed the stability of initial conditions without an explicit522

barotropic jet, but with an effective b term added to the Coriolis parameter, f , such that the PV was523

unchanged but the horizontal shear production associated with the barotropic jet was eliminated.524

In this case, increasing DUBT resulted in larger maximum growth rates. The linear stability analysis525

shows that the effects of variations in barotropic shear and potential vorticity gradients, resulting526

from the addition of a barotropic jet, oppose one another. An increase in the barotropic shear527

reduces the growth rate of BCI, as found by James (1987) and Nakamura (1993a), while changes528

to the PV gradient induced by the effective b term result in increased BCI growth rates.529
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The linear stability analysis suggests that the barotropic governor is not sufficient to prevent530

submesoscale instabilities associated with the initial conditions. Another mechanism is needed to531

explain the apparent stabilization of the front at the end of the simulations with a strong barotropic532

jet. A linear stability analysis with a basic state consisting of the x-averaged buoyancy and along-533

front velocity from the end of the simulations with DUBT = 0.6 ms�1 shows that the mean flow is534

linearly stable. Tests using various combinations of initial and final state flow variables show that535

the modification of the mean buoyancy and the strengthening of the barotropic jet are crucial to536

stabilizing the front in the simulations. This suggests that nonlinear processes are involved in the537

stabilization of the front.538

This result qualitatively resembles the suppression of larger scale turbulence in geostrophic tur-539

bulence (Rhines 1979; Vallis and Maltrud 1993). However, the problem studied here is a fully540

three-dimensional, non-hydrostatic, Boussinesq system and the evolution of the potential vorticity541

and stratification appear to be key to understanding the nonlinear equilibration of the front. In ad-542

dition, the beta-effect is not imposed externally by tangent plane rotation or topography but arrived543

at as a consequence of the resulting flow profile.544

This paper joins other recent papers (Mahadevan et al. 2010; Fox-Kemper et al. 2011; Bach-545

man and Fox-Kemper 2013; Ramachandran et al. 2014; Callies and Ferrari 2017a,b; Whitt and546

Taylor 2017) in clarifying how the long-time evolution of BCI, both with and without winds and547

convection, differs from that arising from the Fox-Kemper et al. (2008) parameterization. That548

parameterization captures only the early-time behavior after BCI reaches finite amplitude, while549

the fronts themselves are resolved in the coarse model (roughly days 5-10 here). While this param-550

eterization would therefore be expected to work well in the early stages of the flow evolution, the551

complications arising from inverse energy cascades, barotropic jet effects, coupling to mesoscale552

instabilities, and convective organization, for example, result in deviations at late times. Interest-553
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ingly, the influence of the barotropic jet effects studied here appears to be the only case tending to554

stabilize BCI and reduce restratification, while the other studies find restratification rates enhanced555

in comparison to Fox-Kemper et al. (2008). A final linear stability analysis was undertaken with556

the buoyancy field and barotropic flow from the simulation corresponding to the largest barotropic557

jet strength, but with flow in thermal wind balance. This configuration also resulted in a fully stabi-558

lized field. This was particularly interesting as it suggested that a geostrophically balanced version559

of the final state was linearly stable. This finding motivates future analysis regarding whether this560

process can be considered as a process of continual mixing and geostrophic adjustment of the flow.561
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FIG. 1. A schematic representation of the problem configuration with a tanh buoyancy profile in y balanced

by a thermal wind, uW . Note that a vertical stratification is included in the stability analysis but not in the initial

conditions of the numerical simulations.
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FIG. 2. Cross-front profiles of buoyancy, b, along-front velocity, u, velocity shear in the cross-front direction,
∂u
∂y , and potential vorticity (PV) gradient, ∂q

∂y , at the top surface, z = 0. The contributions from the surface

thermal wind, uW , barotropic jet, uBT , and total initial along-front velocity, u,, with DUBT = 0.6 ms�1 are also

shown. The dashed line in the bottom panel indicates the initial PV gradient with N2 = 0, as for the non-linear

simulations (note that at this stage, the only contribution to PV gradients is from the thermal wind component,

uW ), while the solid lines indicate the total, thermal wind and barotropic components with N2 = 3⇥ 10�6 s�2,

as for the linear stability analysis in Section 4.
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(a)

(b)

FIG. 3. (a) Domain-average eddy kinetic energy (EKE) and (b) root-mean-square (rms) vertical velocity.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Vertical velocity, 5 m from the bottom of the domain, at various times in the DUBT = 0 ms�1 (left)

and DUBT = 0.6 ms�1 (right) simulations.
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(a) (b)

(c) (d)

FIG. 5. Surface buoyancy at various times for DUBT = 0 ms�1 (left panels) and DUBT = 0.6 ms�1 (right panels).
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(a) (b) (c)

FIG. 6. (a) A cross front section from the simulation with DUBT = 0.6 ms�1 at t = 1.6 days, where color

indicates vertical velocity, w and contours are isopycnals. (b) Along-front averaged buoyancy, bx, for the inital

time (blue) and 1.7 days (red) at z = 120 m for DUBT = 0 ms�1. (c) The difference between EKE for y > Ly/2

and y < Ly/2 (as defined in equation 8) during the period of symmetric instability.
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(a)

(b)

(c)

FIG. 7. Evolution of domain-averaged buoyancy flux (a), stratification (b), and potential energy (c).
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(a) (b)

(c) (d)

FIG. 8. Along-front and depth averaged buoyancy, bxz for a variety of barotropic jet magnitudes: (a) DUBT = 0,

(b) DUBT = 0.1, (c) DUBT = 0.3 and (d) DUBT = 0.6 ms�1.
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(a) (b)

(c) (d)

FIG. 9. Along-front averaged root mean square (rms) vertical velocity, w02x1/2
, for (a) DUBT = 0 and (b)

DUBT = 0.6 ms�1. The time in the top row corresponds to the time of the second local maxima in domain

averaged rms vertical velocity (see figure 3b) and the time in the bottom row is 18 days.
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(a) (b)

FIG. 10. (a) Depth and along-front averaged velocity, uxz, and (b) depth and along-front averaged horizontal

shear, ∂u
∂y

xz
. Solid black lines show the values at t = 0 i.e. the initial barotropic jet uBT and its corresponding

shear. Dashed lines show the same quantities at t = 18 days. Red and blue shading highlight regions where the

velocity and shear have increased or decreased in amplitude, respectively.
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FIG. 11. Depth-averaged horizontal shear production, HSPz at 7.5 days for each barotropic jet strength
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FIG. 12. Growth rate, s , of the most unstable mode from a linear stability analysis, plotted as a function

of along-front wavelength, l = 2p/k, for various barotropic jet amplitudes, DUBT = 0,0.1,0.2,0.3,0.4,0.5 and

0.6 ms�1. The growth rates were calculated for wavelengths between 5 and 14 km, with a 1 km step between

each. Each calculated growth rate is indicated by a cross with lines plotted to guide the eye only.
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(a) (b)

FIG. 13. Horizontal structure of buoyancy perturbations for the fastest growing mode with l = 9 km for

DUBT = 0 (left) and DUBT = 0.6 ms�1 (right) at the top surface, z = 120 m.
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(a) (b)

FIG. 14. Dominant source terms in the kinetic energy budget from the linear stability analysis. Crosses

indicate the growth rate for l = 9 km from the three dominant contributions to EKE growth: (1) buoyancy flux,

b0w0xz (green), (2) horizontal (barotropic) shear production, HSPz (blue) and (3) vertical (geostrophic) shear

production, GSPz. Black crosses indicate the sum of these three contributions. All terms have been divided by

the mean EKE, EKExz. Figure (a) is for full barotropic jet cases, while (b) shows beff cases.
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FIG. 15. Growth rate, s , of the most unstable mode as a function of along-front wavelength, l = 2p/k, for the

linear stability analysis with beff and DUBT = 0,0.1,0.2,0.3,0.4,0.5 and 0.6 ms�1. Growth rates were calculated

for wavelengths between 4 and 16 km, with a 1 km step between each, and each computed solution is indicated

by a cross. Lines plotted are to guide the eye only.
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FIG. 16. Maximum growth rate of the most unstable modes with wavelengths l = 4�16 km normalized by

the maximum growth rate without a barotropic jet. Orange and blue crosses indicate cases with a barotropic jet

and with beff, respectively. The dashed line indicates the normalized growth rate without a barotropic jet for

comparison.
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FIG. 17. Growth rate of the most unstable mode for DUBT = 0.6 ms�1 with the initial conditions (red) and

the final state of the simulation at t = 28 days with: computed buoyancy, b, and idealized along-front velocity,

u, as in equations 2 and 3 (orange); computed buoyancy, b, and computed velocity, u, (green); and computed

buoyancy, b, and computed barotropic component of the along-front velocity u but with an idealized thermal

wind component as in equation 2 (blue).
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FIG. 18. Decomposition of the growth rate based on the terms in the perturbation energy budget based on

a linear stability analysis. All terms are normalized by the perturbation kinetic energy. The left panel shows

results from using the idealized initial conditions. The middle right panels use a basic state with the buoyancy

field constructed by applying an x-average to the numerical simulation with DBTU = 0.6ms�1 at t = 28 days with

the velocity based on the ‘idealized u’ and ‘model u’ as described in the text. Crosses indicate the proportion

of EKE growth from three dominant contributions: (1) buoyancy flux, b0w0yz (green), (2) horizontal / barotropic

shear production, u0v0yz duBT
dy (blue) and (3) vertical / geostrophic shear production, u0w0yz duW

yz

dz (orange). Black

crosses indicates the sum of these three components. Lines are to guide the eye only.
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