31 research outputs found

    Pre-clinical Evaluation of a Cyanine-Based SPECT Probe for Multimodal Tumor Necrosis Imaging

    Get PDF
    Purpose: Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT). For this, the necrosis avid NIRF cyanine HQ4 was radiolabeled with 111indium, via the chelate diethylene triamine pentaacetic acid (DTPA). Procedures: The necrosis avid properties of the radiotracer [111In]DTPA-HQ4 were examined in vitro and in vivo in different breast tumor models in mice using SPECT and optical imaging. Moreover, biodistribution studies were performed to examine the pharmacokinetics of the probe in vivo. Results: Using optical imaging and radioactivity measurements, in vitro, we showed selective accumulation of [111In]DTPA-HQ4 in dead cells. Using SPECT and in biodistribution studies, the necrosis avidity of the radiotracer was confirmed in a 4T1 mouse breast cancer model of spontaneous tumor necrosis and in a MCF-7 human breast cancer model of chemotherapy-induced tumor necrosis. Conclusions: The radiotracer [111In]DTPA-HQ4 possessed strong and selective necrosis avidity in vitro and in various mouse models of tumor necrosis in vivo, indicating its potential to be clinically applied for diagnostic purposes and to monitor anti-cancer treatment efficacy

    Novel application of [18F]DPA714 for visualizing the pulmonary inflammation process of SARS-CoV-2-infection in rhesus monkeys (Macaca mulatta)

    Get PDF
    RATIONALE: The aim of this study was to investigate the application of [18F]DPA714 to visualize the inflammation process in the lungs of SARS-CoV-2-infected rhesus monkeys, focusing on the presence of pulmonary lesions, activation of mediastinal lymph nodes and surrounded lung tissue. METHODS: Four experimentally SARS-CoV-2 infected rhesus monkeys were followed for seven weeks post infection (pi) with a weekly PET-CT using [18F]DPA714. Two PET images, 10 min each, of a single field-of-view covering the chest area, were obtained 10 and 30 min after injection. To determine the infection process swabs, blood and bronchoalveolar lavages (BALs) were obtained. RESULTS: All animals were positive for SARS-CoV-2 in both the swabs and BALs on multiple timepoints pi. The initial development of pulmonary lesions was already detected at the first scan, performed 2-days pi. PET revealed an increased tracer uptake in the pulmonary lesions and mediastinal lymph nodes of all animals from the first scan obtained after infection and onwards. However, also an increased uptake was detected in the lung tissue surrounding the lesions, which persisted until day 30 and then subsided by day 37-44 pi. In parallel, a similar pattern of increased expression of activation markers was observed on dendritic cells in blood. PRINCIPAL CONCLUSIONS: This study illustrates that [18F]DPA714 is a valuable radiotracer to visualize SARS-CoV-2-associated pulmonary inflammation, which coincided with activation of dendritic cells in blood. [18F]DPA714 thus has the potential to be of added value as diagnostic tracer for other viral respiratory infections

    Longitudinal positron emission tomography and postmortem analysis reveals widespread neuroinflammation in SARS-CoV-2 infected rhesus macaques

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role. METHODS: To investigate neuroinflammatory processes longitudinally after SARS-CoV-2 infection, four experimentally SARS-CoV-2 infected rhesus macaques were monitored for 7 weeks with 18-kDa translocator protein (TSPO) positron emission tomography (PET) using [18F]DPA714, together with computed tomography (CT). The baseline scan was compared to weekly PET-CTs obtained post-infection (pi). Brain tissue was collected following euthanasia (50 days pi) to correlate the PET signal with TSPO expression, and glial and endothelial cell markers. Expression of these markers was compared to brain tissue from uninfected animals of comparable age, allowing the examination of the contribution of these cells to the neuroinflammatory response following SARS-CoV-2 infection. RESULTS: TSPO PET revealed an increased tracer uptake throughout the brain of all infected animals already from the first scan obtained post-infection (day 2), which increased to approximately twofold until day 30 pi. Postmortem immunohistochemical analysis of the hippocampus and pons showed TSPO expression in cells expressing ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and collagen IV. In the hippocampus of SARS-CoV-2 infected animals the TSPO+ area and number of TSPO+ cells were significantly increased compared to control animals. This increase was not cell type specific, since both the number of IBA1+TSPO+ and GFAP+TSPO+ cells was increased, as well as the TSPO+ area within collagen IV+ blood vessels. CONCLUSIONS: This study manifests [18F]DPA714 as a powerful radiotracer to visualize SARS-CoV-2 induced neuroinflammation. The increased uptake of [18F]DPA714 over time implies an active neuroinflammatory response following SARS-CoV-2 infection. This inflammatory signal coincides with an increased number of TSPO expressing cells, including glial and endothelial cells, suggesting neuroinflammation and vascular dysregulation. These results demonstrate the long-term neuroinflammatory response following a mild SARS-CoV-2 infection, which potentially precedes long-lasting neurological symptoms

    Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates

    Get PDF
    Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies

    Poxvirus MVA Expressing SARS-CoV-2 S Protein Induces Robust Immunity and Protects Rhesus Macaques From SARS-CoV-2

    Get PDF
    Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.This research was supported by Fondo COVID-19 grant COV20/00151 (Spanish Health Ministry, Instituto de Salud Carlos III (ISCIII)), Fondo Supera COVID-19 grant (Crue Universidades-Banco Santander), and Spanish Research Council (CSIC) grant 202120E079 (to JG-A); CSIC grant 2020E84, la Caixa Banking Foundation grant CF01-00008, Ferrovial, and MAPFRE donations (to ME); a Spanish Ministry of Science and Innovation (MCIN)/Spanish Research Agency (AEI)/10.13039/501100011033 grant (PID2020-114481RB-I00; to JG-A and ME); and internal funding from the BPRC. This research work was also funded by the European Commission-NextGenerationEU, through CSIC’s Global Health Platform (PTI Salud Global) (to JG-A and ME). RD received grants from the European Commission Horizon 2020 Framework Programme (Project VIRUSCAN FETPROACT-2016: 731868 and Project EPIC-CROWN-2: 101046084), and Fundación Caixa-Health Research HR18-00469 (Project StopEbola).Peer reviewe

    A Comparative Study of Chest CT With Lung Ultrasound After SARS-CoV-2 Infection in the Assessment of Pulmonary Lesions in Rhesus Monkeys (Macaca Mulatta)

    Get PDF
    Lung ultrasound (LUS) is a fast and non-invasive modality for the diagnosis of several diseases. In humans, LUS is nowadays of additional value for bedside screening of hospitalized SARS-CoV-2 infected patients. However, the diagnostic value of LUS in SARS-CoV-2 infected rhesus monkeys, with mild-to-moderate disease, is unknown. The aim of this observational study was to explore correlations of the LUS appearance of abnormalities with COVID-19-related lesions detected on computed tomography (CT). There were 28 adult female rhesus monkeys infected with SARS-CoV-2 included in this study. Chest CT and LUS were obtained pre-infection and 2-, 7-, and 14-days post infection. Twenty-five animals were sub-genomic PCR positive in their nose/throat swab for at least 1 day. CT images were scored based on the degree of involvement for lung lobe. LUS was scored based on the aeration and abnormalities for each part of the lungs, blinded to CT findings. Most common lesions observed on CT were ground glass opacities (GGOs) and crazy paving patterns. With LUS, confluent or multiple B-lines with or without pleural abnormalities were observed which is corresponding with GGOs on CT. The agreement between the two modalities was similar over the examination days. Pleural line abnormalities were clearly observed with LUS, but could be easily missed on CT. Nevertheless, due to the air interface LUS was not able to examine the complete volume of the lung. The sensitivity of LUS was high though the diagnostic efficacy for mild-to-moderate disease, as seen in macaques, was relatively low. This leaves CT the imaging modality of choice for diagnosis, monitoring, and longitudinal assessment of a SARS-CoV-2 infection in macaques

    A Comparative Study of Chest CT With Lung Ultrasound After SARS-CoV-2 Infection in the Assessment of Pulmonary Lesions in Rhesus Monkeys (Macaca Mulatta)

    No full text
    Lung ultrasound (LUS) is a fast and non-invasive modality for the diagnosis of several diseases. In humans, LUS is nowadays of additional value for bedside screening of hospitalized SARS-CoV-2 infected patients. However, the diagnostic value of LUS in SARS-CoV-2 infected rhesus monkeys, with mild-to-moderate disease, is unknown. The aim of this observational study was to explore correlations of the LUS appearance of abnormalities with COVID-19-related lesions detected on computed tomography (CT). There were 28 adult female rhesus monkeys infected with SARS-CoV-2 included in this study. Chest CT and LUS were obtained pre-infection and 2-, 7-, and 14-days post infection. Twenty-five animals were sub-genomic PCR positive in their nose/throat swab for at least 1 day. CT images were scored based on the degree of involvement for lung lobe. LUS was scored based on the aeration and abnormalities for each part of the lungs, blinded to CT findings. Most common lesions observed on CT were ground glass opacities (GGOs) and crazy paving patterns. With LUS, confluent or multiple B-lines with or without pleural abnormalities were observed which is corresponding with GGOs on CT. The agreement between the two modalities was similar over the examination days. Pleural line abnormalities were clearly observed with LUS, but could be easily missed on CT. Nevertheless, due to the air interface LUS was not able to examine the complete volume of the lung. The sensitivity of LUS was high though the diagnostic efficacy for mild-to-moderate disease, as seen in macaques, was relatively low. This leaves CT the imaging modality of choice for diagnosis, monitoring, and longitudinal assessment of a SARS-CoV-2 infection in macaques

    Bronchoalveolar lavage affects thorax computed tomography of healthy and SARS-CoV-2 infected rhesus macaques (Macaca mulatta)

    No full text
    Medical imaging as method to assess the longitudinal process of a SARS-CoV-2 infection in non-human primates is commonly used in research settings. Bronchoalveolar lavage (BAL) is also regularly used to determine the local virus production and immune effects of SARS-CoV-2 in the lower respiratory tract. However, the potential interference of those two diagnostic modalities with each other is unknown in non-human primates. The current study investigated the effect and duration of BAL on computed tomography (CT) in both healthy and experimentally SARS-CoV-2-infected female rhesus macaques (Macaca mulatta). In addition, the effect of subsequent BALs was reviewed. Thorax CTs and BALs were obtained from four healthy animals and 11 experimentally SARS-CoV-2-infected animals. From all animals, CTs were obtained just before BAL, and 24 hours post-BAL. Additionally, from the healthy animals, CTs immediately after and four hours post-BAL were obtained. Thorax CTs were evaluated for alterations in lung density, measured in Hounsfield units, and a visual semi-quantitative scoring system. An increase in the lung density was observed on the immediately post-BAL CT but resolved within 24 hours in the healthy animals. In the infected animals, a significant difference in both the lung density and CT score was still found 24 hours after BAL. Furthermore, the differences between timepoints in CT score were increased for the second BAL. These results indicate that the effect of BAL on infected lungs is not completed within the first 24 hours. Therefore, it is of importance to acknowledge the interference between BAL and CT in rhesus macaques

    Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques

    No full text
    Infection with highly pathogenic avian H5N1 influenza virus in humans often leads to severe respiratory disease with high mortality. Experimental infection in non-human primates can provide additional insight into disease pathogenesis. However, such a model should recapitulate the disease symptoms observed in humans, such as pneumonia and inflammatory cytokine response. While previous studies in macaques have demonstrated the occurrence of typical lesions in the lungs early after infection and a high level of immune activation, progression to severe disease and lethality were rarely observed. Here, we evaluated a routinely used combined route of infection via intra-bronchial, oral, and intra-nasal virus inoculation with aerosolized H5N1 exposure, with or without the regular collection of bronchoalveolar lavages early after infection. Both combined route and aerosol exposure resulted in similar levels of virus replication in nose and throat and similar levels of immune activation, cytokine, and chemokine release in the blood. However, while animals exposed to H5N1 by combined-route inoculation developed severe disease with high lethality, aerosolized exposure resulted in less lesions, as measured by consecutive computed tomography and less fever and lethal disease. In conclusion, not virus levels or immune activation, but route of infection determines fatal outcome for highly pathogenic avian H5N1 influenza infection

    Bronchoalveolar lavage affects thorax computed tomography of healthy and SARS-CoV-2 infected rhesus macaques (Macaca mulatta)

    No full text
    Medical imaging as method to assess the longitudinal process of a SARS-CoV-2 infection in non-human primates is commonly used in research settings. Bronchoalveolar lavage (BAL) is also regularly used to determine the local virus production and immune effects of SARS-CoV-2 in the lower respiratory tract. However, the potential interference of those two diagnostic modalities with each other is unknown in non-human primates. The current study investigated the effect and duration of BAL on computed tomography (CT) in both healthy and experimentally SARS-CoV-2-infected female rhesus macaques (Macaca mulatta). In addition, the effect of subsequent BALs was reviewed. Thorax CTs and BALs were obtained from four healthy animals and 11 experimentally SARS-CoV-2-infected animals. From all animals, CTs were obtained just before BAL, and 24 hours post-BAL. Additionally, from the healthy animals, CTs immediately after and four hours post-BAL were obtained. Thorax CTs were evaluated for alterations in lung density, measured in Hounsfield units, and a visual semi-quantitative scoring system. An increase in the lung density was observed on the immediately post-BAL CT but resolved within 24 hours in the healthy animals. In the infected animals, a significant difference in both the lung density and CT score was still found 24 hours after BAL. Furthermore, the differences between timepoints in CT score were increased for the second BAL. These results indicate that the effect of BAL on infected lungs is not completed within the first 24 hours. Therefore, it is of importance to acknowledge the interference between BAL and CT in rhesus macaques
    corecore