4 research outputs found
Variable HIV peptide stability in human cytosol is critical to epitope presentation and immune escape
Induction of virus-specific CD8+ T cell responses is critical for the success of vaccines against chronic viral infections. Despite the large number of potential MHC-I–restricted epitopes located in viral proteins, MHC-I–restricted epitope generation is inefficient, and factors defining the production and presentation of MHC-I–restricted viral epitopes are poorly understood. Here, we have demonstrated that the half-lives of HIV-derived peptides in cytosol from primary human cells were highly variable and sequence dependent, and significantly affected the efficiency of cell recognition by CD8+ T cells. Furthermore, multiple clinical isolates of HLA-associated HIV epitope variants displayed reduced half-lives relative to consensus sequence. This decreased cytosolic peptide stability diminished epitope presentation and CTL recognition, illustrating a mechanism of immune escape. Chaperone complexes including Hsp90 and histone deacetylase HDAC6 enhanced peptide stability by transient protection from peptidase degradation. Based on empirical results with 166 peptides, we developed a computational approach utilizing a sequence-based algorithm to estimate the cytosolic stability of antigenic peptides. Our results identify sequence motifs able to alter the amount of peptide available for loading onto MHC-I, suggesting potential new strategies to modulate epitope production from vaccine immunogens
Portable flanking sequences modulate CTL epitope processing
Peptide presentation is critical for immune recognition of pathogen-infected cells by CD8+ T lymphocytes. Although a limited number of immunodominant peptide epitopes are consistently observed in diseases such as HIV-1 infection, the relationship between immunodominance and antigen processing in humans is largely unknown. Here, we have demonstrated that endogenous processing and presentation of a human immunodominant HIV-1 epitope is more efficient than that of a subdominant epitope. Furthermore, we have shown that the regions flanking the immunodominant epitope constitute a portable motif that increases the production and antigenicity of otherwise subdominant epitopes. We used a novel in vitro degradation assay involving cytosolic extracts as well as endogenous intracellular processing assays to examine 2 well-characterized HIV-1 Gag overlapping epitopes presented by the same HLA class I allele, one of which is consistently immunodominant and the other subdominant in infected persons. The kinetics and products of degradation of HIV-1 Gag favored the production of peptides encompassing the immunodominant epitope and destruction of the subdominant one. Notably, cytosolic digestion experiments revealed flanking residues proximal to the immunodominant epitope that increased the production and antigenicity of otherwise subdominant epitopes. Furthermore, specific point mutations in these portable flanking sequences modulated the production and antigenicity of epitopes. Such portable epitope processing determinants provide what we believe is a novel approach to optimizing CTL responses elicited by vaccine vectors
Comparison of Rapid Antigen Tests\u27 Performance between Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study [preprint]
Background: There is a need to understand the performance of rapid antigen tests (Ag-RDT) for detection of the Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) SARS-CoV-2 variants.
Methods: Participants without any symptoms were enrolled from October 18, 2021 to January 24, 2022 and performed Ag-RDT and RT-PCR tests every 48 hours for 15 days. This study represents a non-pre-specified analysis in which we sought to determine if sensitivity of Ag-RDT differed in participants with Delta compared to Omicron variant. Participants who were positive on RT-PCR on the first day of the testing period were excluded. Delta and Omicron variants were defined based on sequencing and date of first RT-PCR positive result (RT-PCR+). Comparison of Ag-RDT performance between the variants was based on sensitivity, defined as proportion of participants with Ag-RDT+ results in relation to their first RT-PCR+ result, for different duration of testing with rapid Ag-RDT. Subsample analysis was performed based on the result of participants\u27 second RT-PCR test within 48 hours of the first RT-PCR+ test.
Results: From the 7,349 participants enrolled in the parent study, 5,506 met the eligibility criteria for this analysis. A total of 153 participants were RT-PCR+ (61 Delta, 92 Omicron); among this group, 36 (23.5%) tested Ag-RDT+ on the same day, and 84 (54.9%) tested Ag-RDT+ within 48 hours as first RT-PCR+. The differences in sensitivity between variants were not statistically significant (same-day: Delta 16.4% [95% CI: 8.2-28.1] vs Omicron 28.2% [95% CI: 19.4-38.6]; and 48-hours: Delta 45.9% [33.1-59.2] vs. Omicron 60.9% [50.1-70.9]). This trend continued among the 86 participants who had consecutive RT-PCR+ result (48-hour sensitivity: Delta 79.3% [60.3-92.1] vs. Omicron: 89.5% [78.5-96.0]). Conversely, the 38 participants who had an isolated RT-PCR+ remained consistently negative on Ag-RDT, regardless of the variant.
Conclusions: The performance of Ag-RDT is not inferior among individuals infected with the SARS-CoV-2 Omicron variant as compared to the Delta variant. The improvement in sensitivity of Ag-RDT noted with serial testing is consistent between Delta and Omicron variant. Performance of Ag-RDT varies based on duration of RT-PCR+ results and more studies are needed to understand the clinical and public health significance of individuals who are RT-PCR+ for less than 48 hours