6 research outputs found

    Hematopoietic CC-Chemokine Receptor 2 (CCR2) Competent Cells Are Protective for the Cognitive Impairments and Amyloid Pathology in a Transgenic Mouse Model of Alzheimer’s Disease

    No full text
    Monocytes emigrate from bone marrow, can infiltrate into brain, differentiate into microglia and clear amyloid β (Aβ) from the brain of mouse models of Alzheimer’s disease (AD). Here we show that these mechanisms specifically require CC-chemokine receptor 2 (CCR2) expression in bone marrow cells (BMCs). Disease progression was exacerbated in APPSwe/PS1 mice (transgenic mice expressing a chimeric amyloid precursor protein [APPSwe] and human presenilin 1 [PS1]) harboring CCR2-deficient BMCs. Indeed, transplantation of CCR2-deficient BMCs enhanced the mnesic deficit and increased the amount of soluble Aβ and expression of transforming growth factor (TGF)-β1 and TGF-β receptors. By contrast, transplantation of wild-type bone marrow stem cells restored memory capacities and diminished soluble Aβ accumulation in APPSwe/PS1 and APPSwe/PS1/CCR2−/− mice. Finally, gene therapy using a lentivirus-expressing CCR2 transgene in BMCs prevented cognitive decline in this mouse model of AD. Injection of CCR2 lentiviruses restored CCR2 expression and functions in monocytes. The presence of these cells in the brain of non-irradiated APPSwe/PS1/CCR2−/− mice supports the concept that they can be used as gene vehicles for AD. Decreased CCR2 expression in bone marrow–derived microglia may therefore play a major role in the etiology of this neurodegenerative disease

    Lasers and Coherent Light Sources

    No full text

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore