97 research outputs found
Spraying calendar
4 pages. This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu
A study of the damping-off disease of coniferous seedlings
This archival publication may not reflect current scientific knowledge or recommendations
A study of the damping-off disease of coniferous seedlings
This archival publication may not reflect current scientific knowledge or recommendations
Wheat TaRab7 GTPase Is Part of the Signaling Pathway in Responses to Stripe Rust and Abiotic Stimuli
Small GTP-binding proteins function as regulators of specific intercellular fundamental biological processes. In this study, a small GTP-binding protein Rab7 gene, designated as TaRab7, was identified and characterized from a cDNA library of wheat leaves infected with Puccinia striiformis f. sp. tritici (Pst) the wheat stripe rust pathogen. The gene was predicted to encode a protein of 206 amino acids, with a molecular mass of 23.13 KDa and an isoeletric point (pI) of 5.13. Further analysis revealed the presence of a conserved signature that is characteristic of Rab7, and phylogenetic analysis demonstrated that TaRab7 has the highest similarity to a small GTP binding protein gene (BdRab7-like) from Brachypodium distachyon. Quantitative real-time PCR assays revealed that the expression of TaRab7 was higher in the early stage of the incompatible interactions between wheat and Pst than in the compatible interaction, and the transcription level of TaRab7 was also highly induced by environmental stress stimuli. Furthermore, knocking down TaRab7 expression by virus induced gene silencing enhanced the susceptibility of wheat cv. Suwon 11 to an avirulent race CYR23. These results imply that TaRab7 plays an important role in the early stage of wheat-stripe rust fungus interaction and in stress tolerance
Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis
Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goat grass species Aegilops sharonesis (Sharon goatgrass) as a substantial reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (one of the Ug99 lineage races), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors
Fruit and Vegetable Diseases and Their Control
This archival publication may not reflect current scientific knowledge or recommendations. Current information available from University of Minnesota Agricultural Experiment Station: http://www.maes.umn.edu/Stakman, E. C.; Tolaas, A. G.. (1916). Fruit and Vegetable Diseases and Their Control. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/184023
Potato Diseases and Their Control
This archival publication may not reflect current scientific knowledge or recommendations. Current information available from University of Minnesota Agricultural Experiment Station: http://www.maes.umn.edu
- …