703 research outputs found

    Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-aware Contrastive Distillation

    Full text link
    Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced (i.e., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present ACTION, an Anatomical-aware ConTrastive dIstillatiON framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the key innovation in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods.Comment: Accepted at Information Processing in Medical Imaging (IPMI 2023

    Implicit Anatomical Rendering for Medical Image Segmentation with Stochastic Experts

    Full text link
    Integrating high-level semantically correlated contents and low-level anatomical features is of central importance in medical image segmentation. Towards this end, recent deep learning-based medical segmentation methods have shown great promise in better modeling such information. However, convolution operators for medical segmentation typically operate on regular grids, which inherently blur the high-frequency regions, i.e., boundary regions. In this work, we propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation. Our method is motivated by the fact that implicit neural representation has been shown to be more effective in fitting complex signals and solving computer graphics problems than discrete grid-based representation. The core of our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner. Specifically, we continuously align the coarse segmentation prediction with the ambiguous coordinate-based point representations and aggregate these features to adaptively refine the boundary region. To parallelly optimize multi-scale pixel-level features, we leverage the idea from Mixture-of-Expert (MoE) to design and train our MORSE with a stochastic gating mechanism. Our experiments demonstrate that MORSE can work well with different medical segmentation backbones, consistently achieving competitive performance improvements in both 2D and 3D supervised medical segmentation methods. We also theoretically analyze the superiority of MORSE.Comment: Accepted at International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2023

    ACTION++: Improving Semi-supervised Medical Image Segmentation with Adaptive Anatomical Contrast

    Full text link
    Medical data often exhibits long-tail distributions with heavy class imbalance, which naturally leads to difficulty in classifying the minority classes (i.e., boundary regions or rare objects). Recent work has significantly improved semi-supervised medical image segmentation in long-tailed scenarios by equipping them with unsupervised contrastive criteria. However, it remains unclear how well they will perform in the labeled portion of data where class distribution is also highly imbalanced. In this work, we present ACTION++, an improved contrastive learning framework with adaptive anatomical contrast for semi-supervised medical segmentation. Specifically, we propose an adaptive supervised contrastive loss, where we first compute the optimal locations of class centers uniformly distributed on the embedding space (i.e., off-line), and then perform online contrastive matching training by encouraging different class features to adaptively match these distinct and uniformly distributed class centers. Moreover, we argue that blindly adopting a constant temperature Ï„\tau in the contrastive loss on long-tailed medical data is not optimal, and propose to use a dynamic Ï„\tau via a simple cosine schedule to yield better separation between majority and minority classes. Empirically, we evaluate ACTION++ on ACDC and LA benchmarks and show that it achieves state-of-the-art across two semi-supervised settings. Theoretically, we analyze the performance of adaptive anatomical contrast and confirm its superiority in label efficiency.Comment: Accepted by International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2023

    Phosphodiesterase-5 inhibitors in management of pulmonary hypertension: safety, tolerability, and efficacy

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease that causes severe disability and has no cure. Over the past 20 years, a variety of treatment options have evolved for the management of PAH. With an expanded therapeutic armamentarium come more complex decisions regarding treatment options. Agent selection depends upon several factors including efficacy, side effect profile, and cost, as well as convenience of administration. We have undertaken a review of phosphodiesterase-5 (PDE-5) inhibitors in PAH with a focus on efficacy and safety. A literature search was conducted using the Medline and Cochrane Central Register of Controlled Trials databases (1966–February 2010) for relevant randomized clinical studies. Overall, 10 studies met our inclusion criteria. Sildenafil was the most commonly studied agent, followed by tadalafil and vardenafil. Most trials found that the PDE-5 inhibitors significantly improved exercise capacity and lowered pulmonary pressures. However, there were conflicting results regarding these agents’ impact on improving cardiac function and functional class. Overall, these medications were effective and well tolerated with a relatively benign side effect profile. The PDE-5 inhibitors are an important option in treating PAH. While most of the published clinical data involved sildenafil, the other PDE-5 inhibitors show promise as well. Further studies are needed to determine the optimal doses of this therapeutic drug class, as well as its effects as adjunctive therapy with other agents in PAH

    Phonological Features for 0-shot Multilingual Speech Synthesis

    Full text link
    Code-switching---the intra-utterance use of multiple languages---is prevalent across the world. Within text-to-speech (TTS), multilingual models have been found to enable code-switching. By modifying the linguistic input to sequence-to-sequence TTS, we show that code-switching is possible for languages unseen during training, even within monolingual models. We use a small set of phonological features derived from the International Phonetic Alphabet (IPA), such as vowel height and frontness, consonant place and manner. This allows the model topology to stay unchanged for different languages, and enables new, previously unseen feature combinations to be interpreted by the model. We show that this allows us to generate intelligible, code-switched speech in a new language at test time, including the approximation of sounds never seen in training.Comment: 5 pages, to be presented at INTERSPEECH 202

    Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation

    Full text link
    Many medical datasets have recently been created for medical image segmentation tasks, and it is natural to question whether we can use them to sequentially train a single model that (1) performs better on all these datasets, and (2) generalizes well and transfers better to the unknown target site domain. Prior works have achieved this goal by jointly training one model on multi-site datasets, which achieve competitive performance on average but such methods rely on the assumption about the availability of all training data, thus limiting its effectiveness in practical deployment. In this paper, we propose a novel multi-site segmentation framework called incremental-transfer learning (ITL), which learns a model from multi-site datasets in an end-to-end sequential fashion. Specifically, "incremental" refers to training sequentially constructed datasets, and "transfer" is achieved by leveraging useful information from the linear combination of embedding features on each dataset. In addition, we introduce our ITL framework, where we train the network including a site-agnostic encoder with pre-trained weights and at most two segmentation decoder heads. We also design a novel site-level incremental loss in order to generalize well on the target domain. Second, we show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic forgetting problems in incremental learning. We conduct experiments using five challenging benchmark datasets to validate the effectiveness of our incremental-transfer learning approach. Our approach makes minimal assumptions on computation resources and domain-specific expertise, and hence constitutes a strong starting point in multi-site medical image segmentation

    Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective

    Full text link
    For medical image segmentation, contrastive learning is the dominant practice to improve the quality of visual representations by contrasting semantically similar and dissimilar pairs of samples. This is enabled by the observation that without accessing ground truth label, negative examples with truly dissimilar anatomical features, if sampled, can significantly improve the performance. In reality, however, these samples may come from similar anatomical features and the models may struggle to distinguish the minority tail-class samples, making the tail classes more prone to misclassification, both of which typically lead to model collapse. In this paper, we propose ARCO, a semi-supervised contrastive learning (CL) framework with stratified group sampling theory in medical image segmentation. In particular, we first propose building ARCO through the concept of variance-reduced estimation, and show that certain variance-reduction techniques are particularly beneficial in medical image segmentation tasks with extremely limited labels. Furthermore, we theoretically prove these sampling techniques are universal in variance reduction. Finally, we experimentally validate our approaches on three benchmark datasets with different label settings, and our methods consistently outperform state-of-the-art semi-supervised methods. Additionally, we augment the CL frameworks with these sampling techniques and demonstrate significant gains over previous methods. We believe our work is an important step towards semi-supervised medical image segmentation by quantifying the limitation of current self-supervision objectives for accomplishing medical image analysis tasks
    • …
    corecore