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Using Perturbation Theory to Compute the
Morphological Similarity of Diffusion Tensors

Ravi Bansal*, Lawrence H. Staib, Dongrong Xu, Andrew F. Laine, Jason Royal, and Bradley S. Peterson

Abstract—Computing the morphological similarity of diffusion
tensors (DTs) at neighboring voxels within a DT image, or at
corresponding locations across different DT images, is a funda-
mental and ubiquitous operation in the postprocessing of DT
images. The morphological similarity of DTs typically has been
computed using either the principal directions (PDs) of DTs (i.e.,
the direction along which water molecules diffuse preferentially)
or their tensor elements. Although comparing PDs allows the
similarity of one morphological feature of DTs to be visualized
directly in eigenspace, this method takes into account only a single
eigenvector, and it is therefore sensitive to the presence of noise
in the images that can introduce error intothe estimation of that
vector. Although comparing tensor elements, rather than PDs, is
comparatively more robust to the effects of noise, the individual
elements of a given tensor do not directly reflect the diffusion
properties of water molecules. We propose a measure for com-
puting the morphological similarity of DTs that uses both their
eigenvalues and eigenvectors, and that also accounts for the noise
levels present in DT images. Our measure presupposes that DTs
in a homogeneous region within or across DT images are random
perturbations of one another in the presence of noise. The simi-
larity values that are computed using our method are smooth (in
the sense that small changes in eigenvalues and eigenvectors cause
only small changes in similarity), and they are symmetric when
differences in eigenvalues and eigenvectors are also symmetric. In
addition, our method does not presuppose that the corresponding
eigenvectors across two DTs have been identified accurately, an
assumption that is problematic in the presence of noise. Because
we compute the similarity between DTs using their eigenspace
components, our similarity measure relates directly to both the
magnitude and the direction of the diffusion of water molecules.
The favorable performance characteristics of our measure offer
the prospect of substantially improving additional postprocessing
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operations that are commonly performed on DTI datasets, such
as image segmentation, fiber tracking, noise filtering, and spatial
normalization.

Index Terms—Diffusion tensor, Euclidean distance, logarithmic
Euclidean distance, perturbation theory, Rician noise, Riemannian
distance.

I. INTRODUCTION

IFFUSION tensor (DT) magnetic resonance imaging

(MRI) quantitatively measures the diffusivity of free
water molecules in different directions within the human brain
[1]. Whereas free water diffuses equally in all directions,
the presence of cell membranes or cellular organelles within
axons, or myelin sheaths surrounding them, will restrict the
diffusion of water molecules in directions perpendicular to the
long axis of a nerve fiber, particularly in myelinated axons
within white matter of the brain. Thus, by tracking the principal
direction of the diffusion of water molecules, we can track the
direction of fiber bundles along the length of axons in white
matter. Diffusion is quantitatively estimated from a series of
diffusion-weighted images (DWIs) that are acquired using
diffusion-sensitizing MRI gradients applied in multiple direc-
tions (ranging from 6 to 51) [2]. Once estimated, diffusion is
represented by a symmetric 3 x 3 DT, H, which encodes both
the magnitude and direction of diffusion [1], [3]. A DT image
defines a tensor at each voxel within the image. Therefore,
analytic operations (including, for example, reconstruction of
fiber tracts, removal of noise from images, and comparison of
fiber tracts across groups of subjects) require computation of
the degree of similarity between the various diffusion proper-
ties of DTs at neighboring voxels within the image and across
corresponding voxels of images from differing individuals.
Computing the similarity of tensors is thus one of the most
fundamental and important procedures in the postprocessing of
DT images [4].

A number of methods have been proposed for computing
the similarity between two DTs, including the tensor scalar
product [5], the sum of squared scalar products between each
pair of semi-major axes [1], the Euclidean distance metric [6],
and the similarity of the principal directions (PDs) of diffusion
[7]. The first three of these use individual tensor elements to
compute the similarity between two tensors. Tensor elements,
however, are only nonlinearly related to the features of greatest
interest-eigenvalues and eigenvectors-that measure respectively
the magnitude and direction, respectively, of the diffusion of
water molecules. Changes in the diffusion properties of water
molecules therefore will not be reflected by changes in the value
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of a similarity measure that is computed using tensor elements.
In contrast, measures that compare tensors based on their prin-
cipal eigenvectors do produce similarity values that vary with
changes in the direction of diffusion. Because these measures
exclude much of the information that defines tensors, however,
including all of the eigenvalues and two of the eigenvectors of
the tensors, they are highly susceptible to any error that noise
introduces in the DT images when estimating the PDs. The PD
of a DT, therefore, will not be defined clearly, for example,
when noise in a DT perturbs its two largest eigenvalues whose
values are similar. Thus, a PD-based measure cannot compare
tensors reliably, because noise will too often cause incorrect
identification of their PDs.

The valid comparison of tensors using a similarity measure
requires that changes in the measure are symmetric and smooth
when changes in the corresponding diffusion properties of a
water molecule are also symmetric and smooth. By symmetric
we mean that the similarity measure between two tensors de-
creases for either an increase or a decrease in diffusion along a
specified direction in one tensor, as well as for either a clock-
wise or counterclockwise rotation of the tensor. By smooth we
mean that changes in the similarity measure will be small for
small changes, or large for large changes, in the magnitude or
direction of diffusion, and those changes in the similarity mea-
sure will be a differential function of change. The magnitude of
similarity is unimportant, because similarity is computed within
the context of a single image. Extant methods used to compute
the similarity between two DTs thus far fail to satisfy either one
or both of these symmetry and smoothness preconditions for the
validity of the measures.

We propose a method for computing the similarity between
two tensors at neighboring voxels that is based on perturba-
tion theory [8], [9]. We model variations in tensors in a homo-
geneous region as perturbations of their neighbors. The simi-
larity between two tensors can thus be computed from the con-
ditional probabilities of the eigenvalues and eigenvectors of an
unperturbed tensor, given the perturbations in the elements of
the other tensor. Our method accounts for the effects of noise
in DT images. Moreover, these measures vary symmetrically
and smoothly with symmetric and smooth changes in the ten-
sors. Because our method uses all the eigenspace components
of two tensors to compute similarity, the similarity measure re-
lates directly to the diffusional properties of water molecules
within those tensors. Our method also obviates the need to es-
tablish an accurate correspondence between the eigenvectors of
the two tensors when computing conditional probabilities for
those eigenvectors.

II. METHOD

Our method computes the similarity between tensors within
the context of DT images by accounting for noise in the tensor
elements. DTs are most commonly reconstructed from noisy,
gray-scale values in diffusion weighted images using the
Stejskal and Tanner equation [10] together with least-squares
estimation. Estimated tensor elements are therefore random
variables. Assuming that noise in the tensor elements is
Gaussian-distributed, the least-squares estimates are also the
maximum likelihood estimates. We, therefore, estimate vari-
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ance in the tensor elements from the least-squares procedure
and then use the estimated variance to compute the probability
of perturbations in the eigenvalues. Because variance in the
tensor elements depends upon the amount of noise present in
the image, our measure accounts for the presence of noise in
DT images and its effects on tensor maps.

We compute the conditional probabilities of the eigenvectors
of an unperturbed tensor, given the perturbed tensor, using
the wavefunction renormalization constant from perturbation
theory. Our formulation for computing these probabilities can
be divided broadly into two categories those for either nonde-
generate or degenerate tensors, depending on the eigenvalues of
the unperturbed tensor. Nondegenerate analysis is used when
each eigenvalue is unique; otherwise, degenerate analysis is
used. To compute the probability of one tensor given the other,
we assume that the eigenvalues and two eigenvectors of a
tensor are independently distributed. (Although the eigenvalues
of tensors are independently distributed, their eigenvectors
are not independent, because specification of one eigenvector
will restrict the remaining two to the 2-D vector space that is
orthogonal to the first. Nevertheless, one of the eigenvectors in
the orthogonal space still has a large degree-of-freedom and
can be oriented in any direction within the orthogonal space).
Finally, we combine the conditional probabilities for the three
eigenvalues and the two eigenvectors to compute the similarity
of the two tensors.

A. Noise in Tensor Elements

1) Stejskal and Tanner Equation: The Stejskal and Tanner
equation [10] relates diffusion-weighted measurements S; to
nondiffusion-weighted measurements Sy as

3
Sy = Soexp | — Z binij +n (1)

i.j=1

where 7 is noise in the measurements Sy, H;; are the elements
of a DT H; and b;; are the elements of a weighting matrix b
given by b;; = v2G,;G;6%(A — (§/3)), where G; is the am-
plitude of the gradient pulse in the ith direction, ¢ is the pulse
duration, A is the time interval between rising edges of the two
pulses, and ~ is the gyromagnetic ratio [2]. If a unit vector
r = (r1,72,73)T denotes the direction in which a gradient
is applied and Gy = (G? + G3 + G32)'/? denotes the mag-
nitude of the applied gradient, then G; = 7;Go, and b;; =
rirjv>G36%(A — (8§/3)). Hence, trace tr(b) of the matrix b is
given as tr(b) = v2GZ6%(A — (6/3)) [10]. Thus, with b;; =
rir;tr(b), (1) can be rewritten as

Sy = Sg exp(—tr(b)rT Hr) + 1. )

2) Correction for the Rician Distribution: The voxel inten-
sities within the brain, and therefore their noise 7, are approx-
imately Gaussian distributed, i.e., n ~ N(0,0,). If A is the
voxel intensity in the absence of noise, then the probability dis-
tribution p(.Sy) of the voxel intensity Sj, follows a Rician distri-
bution [11]-[16], i.e.,

S SE+ A7 Ay - S
P(81) = 5 exp {—u} Io( s b) 3)
n

2
20,] o5
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where Iy(-) is the modified Bessel function of zeroth order.
This distribution however, in the regions where the signal-to-
noise ratio (SNR) is greater than or equal to 3 [15], can be ap-

proximated with a Gaussian distribution of mean /A7 + o2

and variance 0%, ie.,

2
1 (Sb — VAL U%)
exp | — 52 @
\/2m02 9y

In DW images from most MRI scanners, SNR is well above 3,
and in the in vivo images used in the present study, SNR within
the brain ranged from 5 to 10. Therefore, we used the Gaussian
distribution (4) to approximate the noise 7 in the DW images.

We estimated o7 from the variance o of the intensities in
the background of the image. Because the signal A; is zero in
the background, i.e., A, = 0, the intensities S, are Rayleigh
distributed [17], [15]

s 52
p(Sp) = U—; exp [——b} ®)

n

with mean i = o0,+/7/2 and variance 0* = (2 — 7/2)o;
[17]. We, therefore, estimated o, by computing the square of
the mean (1) of the background intensities [15], i.e.,
2
2

2
o, = —u".
n T

B. Least-Squares Estimates

Taking the natural logarithm and using Taylor’s expansion,
(2) can be rewritten as

In(Sy) = 1n(So) — tr(b)r" Hr + ¢ (6)

where € represents Gaussian-distributed noise with zero mean
and variance o7 = (07 /(Sp)?), i.e., € ~ N(0,0.), which de-
pends upon the weighting matrix b [9]. However, in the pro-
cedure for the least-squares estimates of the tensor elements,
the noise terms e are assumed to be independently and iden-
tically distributed (i.i.d.) with equal variance (i.e., they are as-
sumed to exhibit homoskedasticity) [18], [19]. We, therefore,
compute the noise variance by averaging the variances for dif-
ferent weighting matrices. Furthermore, averaging also reduces
the variability in the computed variance. For diffusion-weighted
measurements Sy in a direction specified by the matrix b, (6) can
be written as

In(Sy) = (1 —b11 — bag — bzz — 2b12 — 2b13 — 2b23) B+ € (7)

where ,[3 = (111(50), H117 }1127 H137 H22./ Hgg./ H33)T is a
vector of elements of the diffusion tensor H and Sy.

Let y denote the vector of the logarithm of diffusion-weighted
measurements and B denote a matrix with rows of elements
for each gradient direction. Equation (7) can then be written in
matrix notation as y = B[ + €. The least-squares estimates ﬁ
of 3 are computed as B = (B'B)~'B'y, and the covariance
matrix Var(J3) of 3 is [18]

Var(8) = o2(B'B) . ®)

In the following analysis, we use the covariance matrix Var(()
to compute the conditional probability of the eigenvalues.

1) Heteroskedasticity Conditions: The noise values e do not
have equal variance for differing weighting matrices b, i.e., € are
heteroskedastic. Under heteroskedasticity, if variances for each
weighting matrix can be estimated reliably at each voxel of the
image, then the covariance matrix Var(ﬁ) of the least-squares
estimates B can be computed as [18]

Var(8) = (B'B)"*B'Y.B(B'B)™* )
where X is a diagonal matrix with entries af(b).

C. Computing Similarities Using Perturbation Theory

We use the following notation [8]: n(® denotes the nth un-
perturbed eigenvector of a tensor Hy; n/(®) denotes the transpose
of the vector n(?); n denotes the nth perturbed eigenvector of a
perturbed tensor H; n(?) denotes the jth-order perturbation of
the eigenvector n; and Agﬂ ) denotes the jth-order perturbation
of the difference A,, in the eigenvalues E,(LO) and F,, associated
with the eigenvectors n(?) and n, respectively.

We use perturbation theory to compute the wavefunction
renormalization constant that is used as the conditional prob-
ability of the unperturbed eigenvector for a given perturbed
eigenvector. The renormalization constant is computed differ-
ently for differing cases depending on the eigenvalues of the
unperturbed tensor. We use a nondegenerate analysis when
each eigenvalue is unique and a degenerate analysis when 2 or
3 eigenvalues of a tensor equal one another. Additionally, we
estimate the first-order change in the eigenvalue and its vari-
ance to compute the conditional probability of the unperturbed
eigenvalue for a given perturbed eigenvalue. We then combine
the two conditional probabilities to compute the similarity
between the two tensors.

1) Nondegenerate Analysis: Let H, denote the unper-
turbed tensor whose eigenvectors (n(?)) and eigenvalues
(Eflo)) are known exactly, ie., Hon® = E,(f])7z(())7
where Ei(o) # EJ(O),Vi # j; and the set of eigenvectors
{n}(=1,2,3) is complete, that is, 1 = 3=, n(On'("), where
1 is the identity matrix. Let H denote the perturbed tensor
obtained by perturbing Hy by matrix V,ie., H = Hy + V.
For small perturbations V, eigenvalues F,, and eigenvectors n
of the perturbed tensor H can be estimated as perturbations of
E,SO) and n(0), respectively.

In the presence of perturbations, the eigenvalue-eigenvector
problem to be solved is (Ho+V)n = E,n. Instead, we used the
customary procedure of estimating the eigenvalues and eigen-
vectors of (Hy + AV)n = E,,n, where ) is a continuous real
parameter which varies from O to 1. If A,, denotes the energy
shift in the nth eigenvalues, i.e., A,, = F, — ET(LO), then the

above equation can be written as
(E©) — Hy)n = (AV — Ap)n. (10)

In (10), » and A,, are estimated by first expanding them in the
powers of A, i.e.,

n=n® 4+ An® £ X2n® 4 ...
Ap =MD £ X2AD ..
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and then by matching the coefficients of the powers of A. Thus,
the difference A,, in the eigenvalues is

A, =E,—-EY
:)\Vnn+)\2z(|§/"—k|2(0)+--- (11)
e B — B,
and the perturbed eigenvector (n) is
n=n 4 A%k(o)ﬁ
2[5O VietVin
iz (B BB - B
DL X""‘/;?O) +0(\®) (12)
ffn )?

where V. = n/ OV 0,
a) Wavefunction Renormalization: The perturbed eigen-
. . . 1/2 .
vector n is normalized to a unit length vector ny = Z,,;’ “n using
a normalization constant Z,,, determined such that nﬁvn N =
Z,n'n = 1. Therefore, the normalization constant Z,, is esti-
mated as

Z;l = nl’n = (n/(O) + )\nl(l) + )\27’[/(2) + . )
. (nm) Con® 2@ 4 )
|an|2 3
=14 X0) —o s+ O(VY).

i (B — B2

an|2
Zn1l— N2 Z | .
d 0 0
iz (B — B2

According to this mathematical formulation, the normalization
constant Z,, is equal to 1 when the perturbed eigenvector is
identical to an unperturbed eigenvector, and equal to O for large
perturbations. In between, Z,, smoothly varies to zero for in-
creasing amounts of perturbations. Thus, Z,, has been used as
the probability that a perturbed eigenvector will be identical
to an unperturbed eigenvector (see [8]). We therefore define
the conditional probability Pr(n(?) | n) of the nth unperturbed
eigenvector n(?), given the perturbed eigenvector n as

|an|2

DT LU N
2 G0 5y

However, Z,, can be negative for large perturbations. For large
perturbations (for example, perturbations at the interface of
gray matter and white matter will be large because of the rapid
change in diffusion properties of water molecules across the
interface) when Z,, is negative, we set the conditional proba-
bility Pr(n(®) |n) equal to 0. Furthermore, note that because
our conditional probability is computed completely in terms of
the eigenvectors and eigenvalues of the unperturbed tensor Hy,
and that the perturbed tensor H is incorporated only through
the perturbation matrix V', our method eliminates the need to
establish correspondence between eigenvectors of the two DTs.

Pr(n(o) |n)=2,=1 (13)
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b) Noise Estimates in Ag) : We use the first-order change
AS) (11) in the eigenvalues E,S‘)) and F,, to calculate the con-
ditional probability Pr(E'r(lO) | E,) of EY given E,,. Assuming
that AS) is Gaussian distributed with zero mean, an esti-
mate of the variance O’Z(l) is used to compute the probability

Pr(E,SO) | En) of EY). Because the first-order perturbations
AD — = Oy p0) = =i mijVij, where n;; are the
i, jth element of the matrix n(®)n/(®); the variance o2 i

computed as

(14)

A = ZZMJTLME ViiVit).
ij

Thus, we compute the probability Pr(E,SO) | En) of g given

FE, as
> 1 AS) 2
INOY 271' 2 N

To compute the expected values E(V;; Vi), we use the covari-
ance matrix Var(ﬁ) (8). For two tensors Hy and Ho, the per-
turbation matrix V' = H, — H;; therefore, the variance and
covariance of the elements V;; of the perturbation matrix V' can
be calculated as

P(E

5)

0.‘2/11 = ZUH ? E(I/LJ) =0

and

E(VijVii) = 2[E(HijHy) — E(Hij)E(H)]

where we have used the fact that noise independently and identi-
cally perturbs the neighboring tensors /71 and Hj. Values from
the covariance matrix Var(/3) are then used to compute the vari-
ance 7, (1), which is in turn used to calculate the conditional

probablhty Pr(Er EY | Ey).

2) Degenerate Analyszs In the degenerate case, we use the
following notations for dummy variables: (1) m will denote
eigenvectors that span the entire degenerate subspace; (2) [ will
also denote the eigenvectors that not only span the degenerate
subspace but also diagonalize the perturbation matrix V; (3) 5
will denote eigenvectors in the degenerate subspace that differ
from [ but diagonalize the matrix V'; and (4) k will denote the
eigenvectors that span the nondegenerate subspace.

In the degenerate case, two or more eigenvalues (called
degenerate) of an unperturbed tensor are equal. The subspace
spanned by the eigenvectors which correspond to the degenerate
eigenvalues is called the degenerate subspace D. Because the
degenerate space is spherical, any set of orthonormal vectors
in D can be chosen as the basis set. We use this fact to select
a set of eigenvectors in D that diagonalizes the perturbation
matrix V in this subspace. Diagonalization of the perturbation
matrix avoids the problem of vanishing denominators (the
denominator is equal to O when two or more eigenvalues are
equal in (12)) when computing the first-order perturbation in
eigenvectors.
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In the case of a g-fold degeneracy, eigenvalues of g eigen-
vectors in the set {m(o)} are equal to the unperturbed eigen-
values Eg]). Perturbation removes degeneracy—i.e., the eigen-
values of all g perturbed eigenvectors will differ. Let {I(®)} be
the set of eigenvectors in the degenerate subspace D that diag-
onalizes the perturbation matrix V. Note that eigenvalues of the
eigenvectors in the set {1(%)} will still be equal to Eg]). Pertur-
bations transform this set of eigenvectors into the set {/} such
that {I} — {1(0} as A goes to zero. Because a DT has 3 eigen-
values, degenerate cases occur in two types, with either 2 or 3
eigenvalues of the unperturbed tensor being equal.

Case I: Two Equal Eigenvalues: If Py and P; are two pro-
jection operators that project an eigenvector onto degenerate
and nondegenerate subspaces, respectively, then the first-order
perturbation () of the eigenvector [ is calculated as (see
Appendix A for details)

1D = p® + p®

-y <L> 3O

0 0
igp \Fpy) — B

L+ Z Z Vit Via (0)

i (A - a0 (59 - ) )

=Y Ck,DEO + > >3k, 1O

k¢D j#LJED k¢ D

(16)

where C(k, 1) are C(j, k, 1) are defined as

B Vi
=z 5p)

. Vi Vi
C(j, k1) = J .
A0 (<A§I>—A§1>><E;3>—E,s°>>>

The eigenvectors in the nondegenerate subspace are calculated
using (12) of the nondegenerate case. Also, the first-order
change in the eigenvalues is calculated as in the nondegenerate
case.

a) Wavefunction Renormalization: We normalize the
eigenvector [ such that the normalized eigenvector [y = Z 11/ %l
is of unit length, i.e., I\in = Zl'l = 1. Therefore, Z; is
calculated as

Zrt =14 20D L 0(N?)

=14+ X | > C(k,1)?
k¢ D

+ Y Y CURDCG.D| + 00,

i#1€D k,q¢ D

Zim1 =X Y Ck,1)
k¢ D

+ > Y ¢k DCG.a.0)

§#1,3€D k,q¢ D

As in the nondegenerate case, Z; lies between 0 and 1 for small
perturbations; therefore, we define Z; as the conditional proba-
bility of the unperturbed degenerate eigenvector given the per-
turbed eigenvector. Hence, for the eigenvectors in the degen-
erate subspace, we compute the probability Pr(I(?) | 1) as

Pr (1<0> |l) s (17)
For large perturbations when Z; is negative, we set the condi-
tional probability equal to 0. The conditional probabilities of
the eigenvectors in the nondegenerate eigenspace are calculated
using (13), and the conditional probabilities of the eigenvalues
are calculated using (15).

Case II: Three Equal Eigenvalues: In this case, the unper-
turbed tensor is spherical, and each eigenvector evolves up to the
first order independently of the other eigenvectors in the pres-
ence of perturbations; i.e., perturbations of an eigenvector are
orthogonal to other eigenvectors (see Appendix E for details).
Thus, the conditional probability of an unperturbed eigenvector,
given the perturbed eigenvector, always equals 1. We, therefore,
compute the similarity between tensors for this case using only
their eigenvalues (15).

D. Computing the Similarity of Two Tensors

A symmetric, positive-semidefinite tensor H(®) can be ex-
pressed using its eigenvectors n(?) and eigenvalues Ey(LO) as [20]

3
HO = 57 BOn® /),

n=1

Because eigenvectors are orthonormal, one eigenvector is com-
pletely defined (up to a sign) by the other two eigenvectors;
hence, a tensor is completely defined by its two eigenvectors
and three eigenvalues. We, therefore, compute the probability
Pr(H© | H) of Hy (unperturbed) given H (perturbed) as

Pr (H<°> | H)
—Pr (1<0>, 20, g g p1,2, El,EZ,Eg)
— Pr (1(°> | 1) Pr (2(°> |2)

Pr (E§°), EQ B | By, By, Eg,) (18)
where we have assumed that the eigenvalues and eigenvectors
are statistically independent. Whereas specification of one
eigenvector constrains the possible realizations of the second
eigenvector because eigenvectors are be orthogonal, the second
eigenvector can lie anywhere in the plane orthogonal to the
first eigenvector, and therefore it still retains a large number
of possible realizations. Thus, the independence assumption is
reasonable (and it also performed well in our experiments, as
shown below). The probability Pr(n(?) |n) is calculated using
either (13) for the nondegenerate case or (17) for the degenerate
case.

We model the first-order perturbation A,(zl) in the difference
between eigenvalues as a Gaussian distributed random variable
with zero mean and variance o AL computed in (14). Therefore,
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using the results in (15), we compute the conditional probability
of the unperturbed eigenvalues given the perturbed as

pr (B, B B | By, By, Bs)
=Pr (B |B)) -Pr (B | B - Pr (B | Bs)
3 1 1 a®)’

where we have assumed that eigenvalues are statistically inde-
pendent.

19)

E. Testing Our Formulation

Comparing the performance of methods for computing the
similarity between two tensors is a challenging task. A true sim-
ilarity between tensors is not defined and therefore tensors with
a priori known amounts of dissimilarity cannot be generated.
Thus, to compare the performance of the methods such that our
comparisons are not biased in favor of a particular method, we
used synthetic and real-world datasets that were generated in-
dependently of the methods that we studied. The six methods
that we used to compute similarity between the perturbed and
the unperturbed tensors are as follows.

1) The tensor probability Pr(Hy | Hy), calculated using our

method (with 02 = 2.0).
2) The deviatoric tensor product Hy - H; = Zf =1 HY; -
H}; — (1/3)Trace(Ho) - Trace(Hy). '

3) The deviatoric sum of the squared scalar products between

each pair of eigenvectors.

Ho : Hy = Y27y AN - el)? — (1/3)Trace(Hy) -
Trace(Hy).
4) The tensor Euclidean distance d(Hy, H) =

/Trace[(Hy — Hi1)?] [6].

5) The log-Euclidean distance LogEuclid(Hy, H,) =
\/Trace[(log(Ho) — log(H1))?], where logarithm of a
tensor is calculated by first computing the logarithm of
its eigenvalues and then recomputing the tensor using the
logarithmic eigenvalues [21], [22].

6) The Riemannian distance Riemann(Hy, H;) =

| log(Hy ' Hy)|| = VZ?=1 In? \;, where \; are the

eigenvalues of the matrix H 0 [23]-[26].
For comparison with the tensor probabilities, we scaled values
of HO . Hl, H() . Hl, d(Ho,Hl), LogEuclid(Ho./Hl), and
Riemann(Hy, Hy) to lie between 0 and 1. Also, the negatives
of the distance values (d(Ho, Hy), LogEuclid(Hy, Hy), and
Riemann(Hj, Hy)) are used as the measure of similarity of two
tensors. Note that because the diffusion tensor space is not an
Euclidean space in R [26], the Euclidean metric is not the right
metric to compute similarity between two tensors in general.
However, we are interested in computing similarity between
two tensors within a small neighborhood where the tensors can
be viewed as perturbations of other tensors in the neighborhood.
In these small neighborhoods, we expect Euclidean distances
to be close to the geodesic distances between any two tensors.
Furthermore, the Euclidean metric has been extensively used
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throughout the image processing literature for postprocessing
DT images. We, therefore, compare the performance of these
six methods for computing similarity between tensors.

1) Synthetic Data: We generated five sets of tensors by per-
turbing an anisotropic tensor with eigenvalues of 20, 10, and
5, and eigenvectors aligned along the X-, Y-, and Z-axes. To
study the effect a of single eigenvalue on various similarity mea-
sures, we generated the first set of tensors by varying the largest
eigenvalue (20 in this case) between 10 and 30. The second set of
tensors was generated by rotating the unperturbed tensor around
the Z-axis (i.e., by varing the angle ) from —50° to +50°. The
third set of tensors was generated by varying two eigenvalues
(20 and 10 of the unperturbed tensor) between 10 and 30, and
keeping the third eigenvalue equal to 5. In the fourth set, the
perturbed tensors were generated by rotating the unperturbed
tensors around two axes, the Z-axis (angle v denotes the ro-
tations about the Z-axis) and the Y -axis (angle 3 denotes rota-
tions about the Y -axis), from —50° to +50°. Finally, to simulate
a more realistic situation, we generated the fifth set of tensors
to include perturbed tensors by varying the eigenvalue between
10 and 30, and rotating the tensor around Z-axis from —50° to
+50°.

Our measure of the similarity of tensors depends on the noise
in the DT image, which we quantify through the value of its
variance o2 in (15) and (19). Therefore, to assess the effect of
o2 on the computed probability, we compared perturbed tensors
in the first two sets to the unperturbed tensor by varying o2 from
2.0 to 12.0. We then plotted the graph of the similarity between
tensors for varying amounts of o2.

2) Real-World Data Sets: We quantitatively and visually
evaluated the performance of the methods for computing
similarity using DT images from two individuals. The raw
DWIs were acquired using a diffusion-sensitizing gradient
of strength b = 1000 s/mm? applied along six direc-
tions: (17 0, 1)7 (_17 0, 1)7 (07 1, 1)7 (07 1, _1)7 (17 1, 0)’ and
(—1,1,0). The DW images data consisted of 58 slices acquired
in the axial orientation, with a scan matrix of size 128 x 128
in each slice. The image voxels were isotropic with resolution
2 X 2 X2 mm.

To ensure that the reconstructed tensors were positive-defi-
nite, we masked out the background in the images and recon-
structed tensors in the brain only. Rarely, a reconstructed tensor
within the brain was not positive-definite. For these tensors, we
imposed the positivity constraint by reversing the sign of the
negative eigenvalue and then recomputing the tensor. Such an
approach reduced computation time without compromising the
imaging data or findings. More advanced methods, including
constrained nonlinear least-squares estimation [27], [28], [19],
could be used to ensure that the reconstructed tensors are posi-
tive-definite; however, these approaches are computationally ex-
pensive.

a) A DT Image From a Single Individual: We generated
synthetic DT images from this single DT image (the template
image) by translating it along the X-axis (the in-plane, or
ear-to-ear axis) or by rotating it around the Z-axis (the vertical,
or superior-to-inferior, axis) by varying amounts. To avoid
uncertainties in interpolating tensors on neighboring voxels,
we generated the translated or rotated versions of the template
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image by first translating or rotating each DW image by speci-
fied amounts and then reconstructing the synthetic DT image.
Furthermore, rotating DW images by rotation matrix R will
rotate the locations of tensors in the image, without rotating
the tensors themselves. Thus, in the sythetic images obtained
by rotating the template image, tensor at location X will be
equal to the tensor at location R~ X, except for interpolation
errors, in the original image. We then computed the similarity
between DTs in synthetic DT images and the template image
at corresponding voxels. We expected that increasing amounts
of translation and rotation would the reduce similarity between
tensors in the synthetic and the template images. Similarity
values were gray-scale encoded and displayed at each voxel in
the template imaging space.

To evaluate quantitatively the performance of these methods,
for all voxels in the brain, we plotted a histogram of the Eu-
clidean distances between the voxel locations of the most sim-
ilar tensors in the template image and the synthetic image. The
tensor in the synthetic image most similar to a tensor in the
template image was found by searching in a 3-D neighborhood
of size 11 x 11 x 11 voxels for translations, and 15 x 15 x 15
voxels for rotations, in the synthetic image. Within this neigh-
borhood, if two tensors were equally similar to the unperturbed
tensor, the Euclidean distance of the tensor closest to the unper-
turbed tensor was used to plot the histogram of distances. We,
therefore, expected the histogram to be skewed towards smaller
distance. For translated versions of the template image, we also
plotted the histograms by restricting our search for the most
similar tensor to a neighborhood of 11 voxels along the X -axis
alone. Because the synthetic images were translated by known
amounts along the X -axis, we expected that histograms for each
method would show increasing distances between similar ten-
sors. In contrast, when the synthetic images were generated by
rotating the template image, even for a small amount of rota-
tion (e.g., v = 5°), tensors far from the axis of rotation would
be translated by large distances from their locations within the
template image. However, for an object of interest (the brain in
our images), the number of voxels decrease for increasing dis-
tance from the axis of rotation. We therefore expected that the
histograms would show a peak at the center for rotations across
images.

b) DT Images From Two Individuals: We studied the per-
formance of the three methods by computing the similarity be-
tween DTs in images from two individuals, both before and
after they were spatially normalized (i.e., rigidly coregistered,
nonlinearly warped, and reoriented) into a common template
space. The DT image from each individual was acquired along
six directions (eight averaged measurements per slice for each
direction) on a Siemens 1.5-T MRI scanner, with repetition time
(TR) = 4000 ms, echo time (TE) = 96 ms, an image matrix of
size 128 x 128, and a field-of-view (FOV) of 240 mm. Nineteen
slices, each 4 mm thick with no spacing between slices, were
acquired in the sagittal orientation, such that the tenth slice was
positioned as the interhemispheric slice. In the template space,
the image volumes were resliced to a 1 mm thickness.

To spatially register the DT images (using rigid registration
and nonlinear warping), we first chose an anatomical MR image
of one individual as the remplate image that defined the common

coordinate space. We then registered and reoriented the two DT
images into this space in two steps [29], [30]. First, we warped
the fractional anisotropy (FA) image of an individual to its cor-
responding anatomical MR image such that the mutual informa-
tion across the images was maximized [31]. Second, we warped
the anatomical image from the individual to the template image
using a method of fluid dynamics such that intensity differences
between the images were minimized [32]. Thus, two deforma-
tion fields for each individual were estimated in these two steps.
A composite of these two deformation fields was then used to
warp the two DT images into the template space. To reorient
the tensors correctly in the template space, we used Procrustean
estimation, which uses local statistical information for optimal
reorientation [33]. We visually verified that the outlines of the
two FA images matched well in the template space. To assess
quantitatively the performance of the three methods for com-
puting the similarity of tensors, we plotted the histograms of
similarity values between tensors at the same locations in the
template space, both before and after normalization of the two
images. We expected that the similarity of tensors across the two
brains would increase after the DT images had been normalized.
Because the method used to normalize the DT images was inde-
pendent of any method used to compute similarity (i.e., normal-
ization of DT images was not based on increasing any similarity
value of the tensors in the two brains), improvement in the com-
puted similarity of tensors through spatial normalization when
comparing our metric with other standard measures of similarity
would validate our proposed method. Ideally, in the normal-
ized images, similarity should equal 1 for our method and O for
both the Euclidean and Riemannian distances between tensors
at all voxels. The similarity computed using our measure de-
pends upon the covariance matrix Var(3), which differs across
images from different individuals. We therefore computed the
variance crz( 1> and therefore the similarity between two tensors,
using three methods and compared their performance. First, we
assumed that the larger amounts of noise in one image can per-
turb tensors in that image more than the perturbation in the other
image and therefore tensors in one DT image normalized to the
other DT image can be viewed as tensors perturbed by this larger
amount of noise. At each voxel we therefore used the larger vari-
ance to compute the similarity between tensors at that voxel.
Second, under heteroskedasticity, we used the larger of the two
covariance matrices Y, (i.e., the matrix whose sum of the di-
agonal entries was larger than the sum for the other matrix) to
compute similarity between tensors. Third, because the tensors
elements are independent and multivariate Gaussian distributed,
we computed the sum of the covariance matrices Var(3), and
used this summed matrix to compute similarity between tensors.
Finally, to study the effects of o2 on our similarity measure, we
varied the values of o2 from 100 to 20 000. We expected the sim-
ilarity of corresponding DTs to increase for increasing values of
o2,

III. RESULTS

A. Synthetic Data

Although both Hy - H; and H : H; varied reasonably for
varying amounts of rotation, their monotonic increases failed to
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Fig. 1. Graphs of various similarity measures for between the unperturbed tensor and the perturbed tensor. The perturbed tensor was obtained from the unperturbed
tensor by (a) only varying the largest eigenvalue from 10 to 30, (b) only varying the angle ~ (i.e., rotations around the Z -axis) from —50° to 50°, (c) only varying the
largest two eigenvalues by the same amount from 10 to 30, and (d) only varying the angles /3 (i.e., rotations around the Y-axis) and v by the same amount from —50°
to 50°. The eigenvectors of the unperturbed tensor were aligned along the X -, Y-, and Z -axes, with eigenvalues 20, 10, and 5, respectively. The similarity between
tensors was computed using six methods: Pr(Hq | H), Ho- H1, Ho : Hy, d(Hy, H, ), LogEuclid(Hy, H, ), and Riemann(H, H ). For comparison, we scaled

the similarity values to lie between 0 and 1 for all of measures. Because the values that were computed using H, : H; were close to the values of Hy -

H,, for

clarity we plotted only the values of H, - Hy. Also, for varying eigenvalues, LogEuclide( Hy, H ) values were close to those of Riemann(H,, H ); we, therefore,
plotted only the values of Riemann(H,, H; ) for varying eigenvalues. The negatives of distance measures are used as the similarity values between tensors. The
graph of similarity values computed using our measure is bell-shaped and symmetric around the point where the perturbed tensor equals the unperturbed tensor.

capture variations in eigenvalues, such as elongations or con-
tractions of the perturbed tensors (Fig. 1). Therefore, when both
the angle v (i.e., rotations around the Z-axis) and eigenvalue
were varied to generate the perturbed tensors, the similarity
computed using these methods was maximal for a perturbed
tensor that significantly differed from the unperturbed tensor
(Fig. 2. Thus, these two measures are not suitable to compute
the similarity of two tensors.

The LogEuclid(Hy, H;) and Riemann(Hy, H;) methods
performed well when the perturbed tensors were generated by
rotating the unperturbed tensor about either the Z-axis only or
about both the Z- and Y - axes [Fig. 1(b) and (d)]. For rotations,
their computed similarity values were symmetrical for sym-
metrical rotations of the perturbed tensors and the unrotated
tensor was determined to be most similar to the unperturbed
tensor. Also, both LogEuclid(Hy, H1) and Riemann(Hy, H1)
varied smoothly for variations in either one or two eigenvalues
[Fig. 1(a) and (c)]. Their computed similarity values, however,
were skewed toward tensors with smaller eigenvalues—i.e.,
contracted tensors were computed to be more similar to the
unperturbed tensor than were elongated tensors. Using these
measures, for example, a tensor with an eigenvalue of 10 had
nearly twice the computed similarity to the unperturbed tensor

than did the tensor with an eigenvalue of 30, even though the
magnitudes of the differences in eigenvalues of the perturbed
tensors from the unperturbed one were identical. However,
when the perturbed tensors were generated by varying both
the angle and eigenvalue of the perturbed tensor, the similarity
values were skewed to the right—i.e., elongated tensors were
computed to be more similar to the unperturbed tensor than
were contracted tensors (Fig. 2). These differing skews in
computed similarity under differing noise conditions could lead
to erratic and erroneous conclusions concerning the similarity
of tensor morphologies when processing real-world datasets.
Both our measure of similarity, Pr(Hy|H;), and the tensor
Euclidean distance, d(Hy, H;), performed well, although
d(Hy, Hy) did not vary with and therefore did not account for
noise levels in the DT image. Pr(Hg | Hy), in contrast, com-
puted similarities within the context of noise in the DT image,
and indeed the similarity of different tensors based on this
measure increased with increasing noise levels in the image,
indicating that the difficulty in discriminating differences in
the morphologies of tensors is proportional to the noise levels
in the image (Fig. 3). Additionally, our similarity measure
varied smoothly with variations in eigenvalue or rotation, and
it was symmetric for symmetrical variations of the tensor. The
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probabilities of similarity between tensors declined when a
tensor was elongated or contracted [Fig. 1(a) and (c)], or when a
perturbed tensor was rotated away from the unperturbed tensor
[Fig. 1(b) and (d)].

When the perturbed tensors were generated by varying both
the eigenvalue and v, elongated tensors were determined to be
more similar to the unperturbed tensor using all measures of
similarity. Although our measure still determined that identical
tensors were most similar, its values were slightly right-skewed
(Fig. 2). This slight skew was expected using our measure, and
can be understood in an example: the profile of a tensor with
eigenvalues 22, 10, and 5 that has been rotated around the Z-axis
by 10° matches better the unperturbed tensor than does a tensor
with eigenvalues 18, 10, and 5 that has been rotated around the
Z-axis by —10° (Fig. 2} middle two panels of bottom row).
Thus, our measure consistently reflected better the actual degree
of similarity in tensor morphology than did the other measures
within these synthetic data.

Finally, as expected, our similarity measure increased with in-
creasing noise levels (Fig. 3). High noise levels cause large per-
turbations in tensors within a homogeneous region. Therefore,
the increasing degree of similarity computed using our measure
reduces the effect of perturbations from noise in the DTI dataset.

B. Real-World Datasets

In our synthetic data, the similarity of tensors computed using
LogEuclid(Hy, Hy) followed closely the similarity computed
using Riemann(Hy, Hy). Both Hy - Hy and Hy : Hy, however,
performed poorly as measure of similarity. For our real-world
datasets, we therefore compared the performance of only three
methods: Pr(Hy | H1), d(Ho, H1), and Riemann(Hy, Hy).

1) DT Image From a Single Individual: For all three mea-
sures, the similarity between tensors in the template and its
translated versions decreased for increasing amounts of trans-
lation (Figs. 4— 6). The histograms show that the Euclidean dis-
tance between the voxel locations of the most similar tensors
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Fig. 4. Effects of translation on similarity measures. Three orthogonal views (axial, coronal, and sagittal) of similarity values between tensors at corresponding
locations in a DT image of a real subject (template) and its translated copies along the X -axis (ear-to-ear axis in the axial view). Three methods were used to
compute similarity: Pr(Hq | Hy), d(Ho, H1 ), and Riemann( Hy, H, ). (The performance of LogEuclid( Ho, H ) was similar to that of Riemann(Hy, H, ).) Large
values of Pr(Hy | Hy) and small values of d(Hg, H;) and Riemann(H,, H;) usually indicate that the tensors matched well, but for ease of comparisons with
our measure, we inverted the intensities in the images for d( Hy, H; ) and Riemann(H,, H ). The similarity of tensors across the template and translated datasets
declined for increasing degrees of translation. Clearly, our measure was the most sensitive indicator of both similarities and dissimilarities in tensor morphology.

along the X -axis increased for increasing amounts of translation
(Fig. 5). For the synthetic image translated by a half-voxel along
the X -axis, the histogram had two peaks for all three methods:
one at 0 and the other at 1 voxel in distance. Because tensors
in the synthetic image that were translated by a half-voxel were
computed by interpolating the voxel’s values by equal amounts
on neighboring voxels, we expected these two peaks ideally to
be of equal magnitude, which was nearly true for our measure
but considerably less so for the other two measures (Fig. 5).
Furthermore, the histogram for Riemann(H, H1) has small,
but clearly discernible, peaks at distances greater than 1 voxel.
Thus, our measure is more sensitive than are the others in differ-
entiating tensors with small perturbations. For translations of 1,
2, or 3 voxels, we expected to see only one peak at distances 1,
2, or 3 voxels, respectively, in the histogram. The histograms for
all three methods have only one peak at the expected distances
(Fig. 5).

In real-world data, however, the true translations are un-
known. We, therefore, also plotted histograms of distances
between the unperturbed tensor in the template image and a
most similar tensor in a 3-D neighborhood of 11 x 11 x 11
voxels in size in the synthetic image (Fig. 6). These histograms
show that the Riemann(H, H;) measure was least able to
distinguish neighboring tensors among the three methods. The
histogram for our measure shows two distinct peaks when the
DT image was shifted by only a half-voxel, and shows that
distances increased for increasing amounts of translation. The
performance of the d(Hy, H;) measure was similar to ours.

All three similarity measures decreased for increasing de-
grees of rotation along the Z-axis (vertical axis in the sagittal
view of the images in Fig. 7). Tensors in the regions near the
axis of rotation had larger values for our Pr(Hy|H;) mea-
sure and smaller values for d(Hy, H) and Riemann(H,, Hy)

(Fig. 7). Tensors farther from the axis of rotation were less
similar. In addition, the size of the region around the axis
where DTs matched well decreased for increasing degrees of
rotation between images. The histogram of distances between
the most similar tensors in the template image and the rotated
image as expected shows a large spread of distances and a
single peak in the middle for both our measure and d(Hy, H1)
(Fig. 8. These two methods, therefore, correctly determined
similar tensors across the template and the rotated images. The
method based on the Riemann(Hy, H;) distance, however,
failed to determine the appropriate similar tensors across the
two images. Thus, both our method and d(Hy, H;) performed
well when computing the similarity between tensors across
real-world images, although our method was able to distinguish
better among differing tensors.

2) DT Images From Two Individuals: Similarity increased
across tensors in the two DT images after they were normal-
ized into the template space (Fig. 9). The histograms of sim-
ilarity values for our measure and for the measure d(Hy, Hy)
showed that spatial normalization produced marked improve-
ments in the similarity of tensors across corresponding voxels of
the two images (Fig. 10). The number of tensors with similarity
greater than 0.5 computed using our method increased by 480%
after normalization. However, the Riemann(Hy, H;) measure
detected only minimal improvements in similarity (Fig. 10).
Similarity computed between tensors in images from two indi-
viduals under heteroskedasticity shows that after normalization
the number of tensors with similarity greater than 0.5 increased
by 930% and 422% when using the sum of the two covariance
matrices [Fig. 11(a)] and the larger two matrices [Fig. 11(b)],
respectively. Because the method that spatially normalized the
images was independent of the methods used to compute simi-
larity between tensors, and because the similarity of the tensors
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Fig. 5. Histogram of distances between the most similar tensors along the X -axis. From a single template image, we generated simulated images that were shifted
along the X -axis by varying amounts (Fig. 4). We then used one of the three similarity measures, Pr(H, | H1), d(Ho, H1), and Riemann(Ho, H, ), to find a
tensor along the X -axis in the shifted image that was most similar to the unperturbed tensor. We computed the Euclidean distance between the most similar tensors
and plotted the histograms. For increasing amounts of translation, the distance between tensors increased, especially when the most similar tensor was searched
using our method. Our measure therefore was most sensitive to perturbations in tensors and distinguished better tensors with differing morphologies in neighboring

voxels.

was expected to be greater in the normalized images, these find-
ings show that our measure is more sensitive to perturbations in
tensors, and therefore more correctly detected differences in the
similarity of tensor morphologies, than do the other commonly
used measures.

Our metric of similarity increased proportionally with syn-
thetically manipulated noise levels in the DT images (Fig. 12).
Because two tensors therefore cannot be differentiated using our
metric in the presence of large amounts of noise, the asymptotic
similarity of any two tensors is 1. Our metric is robust to the
presence of noise because it explicitly uses noise levels in its
computation.

IV. DISCUSSION

Computing the morphological similarity of tensors at neigh-
boring voxels within a DT image, or at corresponding voxels
across DT images from differing individuals, is a fundamental
and ubiquitous operation in the postprocessing of DT images.
Various methods have been proposed to compute similarity
measures, and we compared quantitatively the performance
of our measure with that of five other similarity measures
frequently employed in the postprocessing of DT images. Of
these six measures, the Euclidean distance d(Hy, H;) and ours
performed better than the other methods in both synthetic and
real-world datasets. Our method, however, was more sensitive
to morphological differences and better able to distinguish

tensors that differed by only small perturbations than were the
d(Hy, H1) and Riemann(Hy, H) measures. Additionally, our
method exhibited a clear advantage in computing a similarity
value that related directly to the diffusion properties of water
molecules (i.e., to their eigenspace components). Finally, our
metric was explicitly developed to be sensitive to noise levels
in the DT images, and our demonstration of its dependence on
synthetically generated noise levels also demonstrated that the
behavior of our metric in the presence of noise was smoother
and less erratic than were the behaviors of the other measures.
Computing the similarity of two tensors is a local operation
in most postprocessing procedures for DT images, including
fiber tracking, noise filtering, local nonlinear warping, and
image segmentation. Our experiments using synthetic tensors
showed that both d(Hy, H) and Riemann(Hy, H;) performed
equally well in small neighborhoods of the tensor space (Figs. 1
and 2). Within imaging space, however, tensors may differ
significantly in a small neighborhood because of differing
tissue type and because of differing orientation of fibers passing
through a region of the brain. In these regions of the brain,
tensors on neighboring voxels may differ significantly, and
d(Hy, Hy) is therefore not an appropriate measure to compute
similarity between tensors within these regions. On the other
hand, although Riemann(Hy, F;) will compute similarity that
is mathematically meaningful, we believe that the similarity of
tensors across differing brain regions is not well-defined—i.e.,
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Fig. 6. Histogram of distances between similar tensors across images. Here, we plotted the histogram of distances between the most similar tensors acrossthe
template image and its translated versions. We searched for the most similar tensor in a 3-D neighborhood 11 x 11 x 11 voxels in size, and we used the Euclidean
distance between them to plot the histograms. If two tensors in the synthetic image were equally similar to the unperturbed tensor in the template image, we used
the Euclidean distance of the tensor closest to the unperturbed tensor to plot the histogram. For increasing amounts of translation, the spread of distances in the
histogram shifted to larger distances between similar tensors, especially for our method.

a numerical value representing the similarity of two ellipsoids
that have vastly differing morphologies provides no more
information to an investigator than simply stating that the two
tensors differ in shape. Tensors will be oriented differently
across various tissues and brain regions, and therefore com-
paring eigenvectors of the tensors across differing regions is
undesirable. (In that instance, if the investigator is interested in
studying differences only in the eigenvalues of the two tensors,
then the similarity of tensors can be computed using only the
eigenvalue terms in our formulation; other methods to com-
pute similarity do not provide such flexibility.) Our measure
therefore will not differentiate tensors well that differ greatly
in morphology (as would be encountered, for example, when
spatially normalizing one DT image to match another), because
it will not distinguish differing degrees of similarity when the
tensors are not similar at all. Nevertheless, our measure will
be considerably more robust in the presence of noise and more
sensitive in discriminating differences in tensor morphologies,
than are the other measures in postprocessing procedures,
including the registration of images that are already in close
approximation, because it better distinguishes tensors that
differ by only small morphological perturbations, and because
most postprocessing steps are localized operations.

A similarity measure for diffusion tensors must generate
similarity values that change smoothly and symmetrically for
corresponding smooth and symmetrical changes in the diffu-
sion properties of water molecules. Otherwise, small changes

in diffusion could produce large changes in the similarity mea-
sure, which in turn could produce errors in the postprocessing
operations that use it and that depend crucially on the validity
and accuracy of the measure, such as the tracking of fiber path-
ways, that depend crucially on the validity and accuracy of the
similarity measure. Our synthetic examples showed that both
Hy - Hy and Hy : H; performed increasingly poorly with in-
creasing morphological differences between tensors. The tensor
Euclidean distances d(Ho, H1) was symmetric and continuous
but not smooth. Finally, although the LogEuclid(Hy, Hy),
and Riemann(H,, H;) measures were continuous, they were
not symmetric. Our similarity measure, in contrast, increased
smoothly, continuously, and symmetrically for smooth, contin-
uous, and symmetrical differences across tensors.

Measures that assess the morphological similarity of tensors
should account for the noise level in the image, because the
noise present in all DT images will produce unknown varia-
tions in a tensor’s eigenvalues and eigenvectors. Using synthetic
examples and real-world DT datasets, as well as manipulation
of noise levels in the images, we showed that our similarity
measure accounts for noise in the images by appropriately in-
creasing in proportion to increasing noise levels, unlike more
commonly used measures. In other words, the sensitivity of our
measure (the change in similarity value for small changes in dif-
fusion properties) for detecting differences in eigenspace com-
ponents decreases with increasing noise in the image. Because
two tensors are perturbed more in the presence of increasing
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Fig. 7. Effects of rotation on similarity measures. Plots of similarity between tensors across a template image and synthetic images obtained by rotating the
template image around the Z -axis (the superior-to-inferior axis in the sagittal view). Similarity was computed using three methods: Pr(H, | H1), d(Ho, Hy), and
Riemann(Hg, H;). (The performance of LogEuclid( Ho, H;) was similar to that of Riemann(H,, H;).) Three orthogonal views (axial, coronal, and sagittal) of
the similarity maps are displayed. Tensors in the neighborhood of the axis of rotation (i.e., the Z-axis) are most similar to tensors at corresponding locations in the
template image. For ease of comparison across method, we inverted the intensities of the similarity maps for d(Ho, H1) and Riemann(H,, H; ). The similarity
between tensors reduces rapidly for increasing rotation between images, as is evident when the rotation is increased from 5° (top row) to 15° (bottom row). Our
similarity measure is the most sensitive indicator of differences in tensor morphology in the template and rotated images.
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Fig. 8. Histogram of euclidean distances between the most similar tensors across the template image and the synthetic image rotated by 5° around the Z-axis. Even
for a small amount of rotation, tensors far from the axis of rotation are translated by large amounts. To plot the histogram, we searched for the most similar tensor in
a3-D neighborhood 15 x 15 x 15 voxels in size. We computed these histograms for three similarity measures: Pr(Ho | Hy ), d(Ho, H1), and Riemann(Hy, Hy).
As expected, histograms for both Pr(H, | H, ) and d(H,, H1) show a large spread and a peak in the middle of distances between the tensors that are most similar

across the images.

noise, our method accounts for these perturbations by increasing
the similarity value of the two tensors. In the limiting case in
which noise increases to a very large value, our measure will
approach a value of 1 for all tensors, because no information
can reliably differentiate the DTs in the presence of this much
noise (note also that our similarity measure equals 1 when com-
paring two identical tensors).

Improving the sensitivity of similarity measures to detect
variations in tensor morphology will improve the discrimi-
nation of those morphologies and therefore will improve the
validity and accuracy of other postprocessing operations that
are commonly performed on DT images, such as image seg-
mentation [34]-[36], fiber tracking [37]-[42], noise filtering
[43], and spatial normalization [33], [31], [44]-[50]. Despite
the importance of their validity and accuracy, few studies have
ever actually compared directly the performances of differing
similarity measures. We, therefore, compared quantitatively
the performance of our similarity measure with those of five
others. We showed that ours was most sensitive to perturbations
in tensor morphology and that its performance was most robust

in the presence of noise in the DT images. Furthermore, our
method can be employed easily in additional postprocessing
procedures. Guided by this improved understanding of the
performance characteristics of the various measures, we are
developing methods for reducing noise in DTI datasets that
exploit this improved ability to compute the similarity of
neighboring tensors.

Because diffusion tensors are randomly distributed in the
presence of noise, a similarity measure will itself be a random
variable. When processing DTI datasets from many individ-
uals, the analytical distribution and statistical properties of the
similarity measure can be useful in the further postprocessing
of DTI datasets [26], [36], [51], [52]. Our measure computes
the probability of similarity, which is a product of various
conditional probabilities (18). It, therefore, can be regarded as a
test statistic between tensors, because it is simply a transforma-
tion of random tensors. Computing the analytical probability
distribution of our similarity is challenging, however. The com-
puted conditional probability of eigenvectors in this measure
is a sum of the ratio of squared random variables [(13) and
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Fig. 9. The similarity of tensors in DT images from two differing individuals. Shown is the comparison of tensors at corresponding locations across DT im-
ages of two individuals before (top row) and after (bottom row) they were spatially normalized (i.e., nonlinearly warped and reoriented) into a common template
space [29], [30]. Three orthogonal views (sagittal, axial, and coronal) through the 3-D dataset show three similarity measures: Pr(Hy | H:), d(Ho, H; ), and
Riemann(Hy., H; ). The similarity between tensors across normalized images improved significantly (bottom row).

(17)]. If the numerators and denominators are assumed to be
Gaussian-distributed, then these ratios, and therefore the con-
ditional probability of the eigenvectors, will be F-distributed.
Furthermore, if the conditional probabilities of the eigenvalues
(15) are assumed to be Gaussian-distributed, then computing
the analytical distribution of our similarity measure will re-
quire derivation of the distribution of the sums of products of
random variables that are Gaussian- and F-distributed—a most
challenging task. Nevertheless, various statistical properties of
our similarity measure can be computed accurately using non-
parametric methods, including bootstrapping and permutation
statistics [16], [53], [54], thereby providing at least one option
for performing rigorous statistical comparisons of the measure
without the need first to compute its analytical probability
distribution.

The valid mathematical formulation of our measure rests
on two assumptions: 1) the wavefunction renormalization
constants 7, and Z; [(13) and (16), respectively], define
the conditional probability of an unperturbed eigenvector
for a specified perturbed eigenvector, and 2) eigenvectors
and eigenvalues of a DT are distributed independently. The
renormalization constant is not a true conditional probability
because it can be negative for large perturbations. Our ex-
periments show, however, that the renormalization constant
is nonnegative for a sufficiently large range of perturbations
(£35° rotations) that are realistically plausible for tensors
within structurally homogeneous regions of the brain. For
larger perturbations, we set the renormalization constant, and
hence the corresponding conditional probability, equal to 0,
thereby forcing the conditional probability to lie between O
and 1. Note that even though the conditional probability is set
to 0 for large perturbations, our computed similarity measure
is smooth because it smoothly reduces to zero for increasing
perturbations [Figs. 1 and 2]. Once the computed similarity re-
duces to zero, our ad hoc procedures set the probability equal to
zero for larger amounts of perturbation. This procedure allows
us to interpret the renormalization constant as a conditional
probability, an assumption whose validity was supported by our
experiments with simulated and real data. As discussed earlier,
although the eigenvectors of a tensor are not independently
distributed, the assumption of independence allowed us to

formulate the conditional tensor probability in mathematically
simple terms.

Future studies should investigate the computation of the con-
ditional probability using the component of the second eigen-
vector that evolves in the 2-D vector space orthogonal to the
tensor’s principal eigenvector. This will obviate the need to as-
sume that the eigenvectors of a DT are independent, which will
in turn improve the accuracy of the computed similarity mea-
sure. Nevertheless, our similarity metric as currently computed
performed well in all of our experiments, thereby supporting its
computational utility while assuming the independence of the
tensor’s eigenvectors.

APPENDIX

A. Degenerate Theory

Although derivations for the nondegenerate case are available
in any standard text on quantum mechanics (for example see [8])
these books do not provide the intermediate steps for derivations
in the degenerate case. Therefore, for the sake of completeness,
we herein derive and present all the steps needed to compute the
wavefunction normalization constant in the degenerate case.

Equation (12) cannot compute perturbations in eigenvectors
when two or more unperturbed eigenvalues are equal, because
the denominators will equal zero (vanishing denominators).
Vanishing denominators can be avoided by using a set of
eigenvectors that diagonalizes the perturbation matrix V' in the
degenerate space.

For a g-fold degeneracy, eigenvalues of g unperturbed eigen-
vectors equal EI(DO) . Let the set of degenerate eigenvectors be de-
noted by {m(%)}. Perturbations remove degeneracy, and there-
fore eigenvalues of the corresponding g-perturbed eigenvectors
will differ. Because the set of eigenvectors {m(?)} is degenerate,
we select another set of eigenvectors {I(°)} in the degenerate
subspace D (subspace spanned by { m(©) }) that diagonalizes the
matrix V (i.e., Vo, = 0,Vn # k). This set of eigenvectors is
perturbed to a set of eigenvectors {/} such that {I} — {I(0)} as
)\ goes to zero. (Eigenvectors in the set {1(°)} are also eigenvec-
tors of the unperturbed matrix Hy, each with eigenvalue Eg)) )

Let Py be the projection operator that projects [ onto the de-
generate subspace spanned by {ID}, ie., Py = 3,10 [©),
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Fig. 10. Histogram of similarity values at corresponding locations across two individual images (Fig. 9) both before and after normalization. We expected the
similarity between tensors at corresponding locations to increase significantly following normalization. Histograms in the left column show that after normalization,
more tensors were similar across images when similarity was assessed using our measure. In our method, the number of tensors with similarity greater than 0.5 in
the normalized images increased by 480% as compared to those in images before normalization.

—

Number of Tensors

% 02 04 06 08 1
Pr(HOJH1)
(a)

®
(o]
7]
| =
(0]
st
kS
)
€1
=}
Z0

0 02 04 06 08 1

Pr(HO[H1)
(b)

Fig. 11. Similarity computed across images after normalization with covariance matrix Var( (3) of the noise calculated using (9), i.e., under heteroskedasticity of
the noise in the tensor elements. To compute similarity between tensors across the two images normalized into the common space, we consider the tensors in the
normalized image as perturbations of the tensors in the other image. The noise in the tensor elements is multivariate Gaussian that is assumed to be independently
distributed across images from two individuals. Assuming heteroskedasticity, we computed noise variance in tensor elements using two methods: (a) because the
noise in the two images is independently Gaussian distributed, we computed the covariance matrix of the noise as the sum of the two covariance matrices Var(/)
of the noise in the two images, and (b) using the larger matrix of the two covariance matrices in the two images. We then used the estimated covariance matrix
to compute similarity between tensors at corresponding locations across the two images. The number of tensors with similarity greater than 0.5 in the normalized
images increased by (a) 930% and (b) 422% as compared to those in images before normalization (Fig. 9, top row).

Then the projection operator P; that projects eigenvectors onto
a subspace orthogonal to D is defined as P, = 1 — Fy. Thus,
the perturbed eigenvector [ can be written as the sum of its pro-
jections on these two subspaces: [ = Pyl + P1l. We will use the
following result in our derivations:

HoPy = Hy» 1010 =3 1ol
l l

= Z E9©0(0)

_ Eg)) Z l(O)ll(O) — Eg))PO
l l

(20)

where (20) follows from the unperturbed eigenvalue-eigen-
vector problem.

In the degenerate case, the exact perturbation problem to be
solved is (Hg + AV))l = El, which can be rewritten as

0=(E—Hy— V)l = (E— Hy— \V)(Pol + P1l)
(E — Hy— A\V)Pyl + (E — Hy — A\V) Pyl

(E— B — \V)Pyl + (E — Hy — AV) Py L.

21

To calculate the total perturbation in the eigenvector [, we
divide the problem into two subproblems: first, we compute
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Fig. 12. The effects of varying noise levels on our similarity measure similarity was computed between tensors using our measure at corresponding locations in
normalized DT images from two differing individuals. The similarity of tensors increased with increasing noise levels.

the first-order perturbations of [ in the nondegenerate subspace;
second, we compute the first-order perturbations of / in the de-
generate subspace. We then add the two first-order perturbations
to calculate total perturbation in the eigenvector [.

B. Projecting on the Nondegenerate Subspace Using Operator

Py

Taking projection from the left using P; in (21), we obtain

0="r (E B /\V) Pol + Pu(E — Hy — AV) Pl

= APV Pl + (E,<g> + Ay — Hy - )\Plv) Pl

and

(E,go> - HO) Pyl

= AP\ VPl — (A — AP, V)Pl (22)
because PPl = P;l and P;Pyl = 0. We can solve this
problem in the P; subspace because the operator P, (E — Hy —
AP,V Py) is nonsingular and the eigenvalues of Py Ho P, are all

unique and differ from Eg))

Substituting approximations [ = (9 + \I(V) 4+ ... and E —
EW = A = NOVE = AAW 4 2AP 4. in (22), we
have

(E,g°> - HO) P (l(°> FNO 4 )
= APV R (10 4 0 )
— (AP +aP )
- ,\Plv} P (l<°> O 4 ) .
Keeping the terms up to the second power in \, we have
(B = Ho) Py (N© +x21®)
— AP,V P, (z<°> + /\l(l))

=X (A = v P,

Equating terms that are first-order in A, we obtain

(B - Ho) PO

= P,V Py
pll(l)
1
= Tplvpoz@) = TPlvz<°>
E} H0 EY) — H,y
= Z e k(o)k’(o)Vl<0)
k¢ D Ep
=> k(O)Vkl
0) 0 ’
= EO _EO E( )

where we have used the facts that Pyl(® = [0 and that the
inverse operator (1/ Eg]) — Hy) acting on P; can be simplified

as
1 1
P = Z £(0)1/(0)
0 0 0
By —Hy G5 By — B
because P = (1 — Py) = Zng £(0)/(0)

Therefore, the first-order perturbation of the eigenvector [ in
the nondegenerate subspace is computed as

>0

k¢D

P = (23)

E,E(’)

C. Projecting on the Degenerate Subspace Using OperatorP,

Next, we compute the perturbations of the eigenvector / in the
degenerate subspace D by taking the projection from the left in
21

0= Po(E — EY) — A\V)Pyl + Py(E — Hy — A\V) Pyl
= (A; = APYV) Pyl — AP,V Pyl

because Py Pyl = Pyl, and PyPil = 0.
Substituting approximations for A; and [ is this equation, we
obtain

[(AA}” +a2A® 4 ) - )\POV]
x Py (l(o) + MO £ 2@ 4 )
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because P;l (©) — . Because ) is nonzero, we divide by A and
keep the terms up to second order in A

[SEERYNEEPUNCEINY
x Py (10 4+ N 4+ )2@)

— PVP ()\l(l) ¥ /\21(2)) . (24)

By equating the zero-order terms in (24), we obtain

(Az(l) - POV) Pyl =0 or Al(l)l(o) = PV P,

Thus, (?) and Al(l) are eigenvectors and eigenvalues, respec-
tively, of the perturbation matrix V' when projected into the de-
generate subspace D (i.e., eigenvalues and eigenvectors of the
matrix PyV Fy).

By equating the first-order terms in the powers of A in (24),
we obtain

AP p® 4 (A}l) - P0V> Pyl

= P,vPIM
(A = RV) P
= RV P ID — AP Py ©

(Al(l)Po - POVPO) Pyl

= RV P ID — AP P ©), (25)

(This equation can be used to show that I(°) and I(") are or-
thogonal.) Premultiplying (25) with /(9 where j € D but
7 # [, and noting that

FOAD p® = jOAD O = AP j1(0)0) — ¢
we obtain
7O (AP = PV Ey) Pl = () PV P,

The left-hand side term in this equation can be rewritten as

7O (AP = PV R) = AFO — O RV Py
- Agl)j/(o) _ Aj(.l)j’(o)
_ 0 (al) Al

Therefore, we have

0 (Afl) A<1)) Pyl = O pyv p®,

Premultiplying this equation by j(?), we obtain
©10) (Al(l) _ A;l)) Pyl

=4O yOpvPIM),
§0)570) py )

j(O)

=~ FO PV PIM.
™ _

M
AJ'

Thus, the last equation evaluates the projection of Pyl") on
the subspace defined by the eigenvector j(?). Because Pyl(!)
is orthogonal to both the eigenvector /(%) and the subspace de-
fined by Py, we obtain Pyl(), by summing its projections on all
eigenvectors j(°) where j # [ and j € D.

Thus, the projection of the first-order perturbations Pol(!) in
the degenerate subspace is

Pol® = Z 300570 py1)
j#1,j€D
iV 1(0) )
= Z FOP VPRI, (26)

1 1
hgen AP =AY

Using (23), we can rewrite (26) as

pol(l)
7(0)
o J ~1(0
= A, amoam TR
j#lLjeD =1 T =Yy
5 (Gt )1
A E()
Vik Vi

> >

( ) PORO )j(o)'
i#lsepkgp \(A;7 — - k)

27

AWY(ES

Therefore, the total first-order perturbation (1) in the eigen-
vector [(?) is obtained by summing (23) and (27)

1D = p® + p®

>

_ <%> o)
AV

VieVia (0
+ Z Z( 1 1J 0 0 )J()
jhrgepigp \(AY = AV ED - E”)
=> Ok, DEO + > > O3k, 1O
k¢D j#1,jED k¢ D

and the eigenvector [ is approximated as [ = [(©) 4+ \[(1) +
O(\?).

As in the nongenerate case, we use the normalization [’ 07 =
1, which allows us to compute the change in the eigenvalues

A = F - Eg]) = N'©OV] that is approximated as A; =
A 4 aA®

The first-order term Al(l) is eigenvalue of the operator
PyV Py, and the second-order correction term A;Z) can be

shown to be

[Via|*

0 0) "
EY — g

AP =3

k¢D

The eigenvectors not in the degenerate subspace evolve ac-
cording to nondegenerate theory [see (12)].
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D. Wavefunction Renormalization

From the eigenvector [ we calculate normalized eigenvector
I = le/zl such that y!'ly = Z;I'l = 1. Therefore, the nor-
malization constant Z; is computed as follows:

Z7 =14 20O 1 003

=14\ Z C(a,1)a'®

a¢ D
+ Y > Cbq,
b£L,bED q¢ D
DD CHhDED + Y > CG kD
k¢D j#LjED k¢D
+0(\?*)
=147 > Ck,1)?
k¢D

+ Y > CGkDCG,a.1)
J#L,JED k,q¢ D
+O0(\3).

Thus

Zim 1=\ | Ck,1)
k¢ D

+ Z Z C(Jk7l)C(JQ7l)

i#1.5€D k,q¢ D

E. Complete Degeneracy

When all eigenvalues are equal, each perturbed eigenvector
evolves independently (orthogonal) of the other perturbed
eigenvectors. And because the DT is spherical, its perturbed
eigenvectors are the same as the unperturbed ones. The exact
eigenvalue—eigenvector problem to solve in this case is

0=(E—EY ARV Pol = (A = ARV) Pl

where P, is the projection operator projecting eigenvectors onto
the degenerate subspace, which is the complete space for this
case. Substituting approximations for A; and /, we obtain

0=[(0af + 222 +-) - ARV

x Py (1(0) + MDD A2 4. ) .

Because A is non zero, dividing by A and keeping only the
terms up to the second-order in A\, we obtain

0= [(A;l) + AAEQ) + )‘2A1(3)) _ APOV}
x Py (10 4 XD 4 X20)
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Equating the zero-order terms in A\, we obtain A;l) Pyl©® =
PyV Pyl®, which is the eigenvalue-eigenvector problem to
solve in this case. Equating the first-order terms in A, we have

(A = PoV) Pt + AP R = 0

(A = PV) P + APIO 0,

Premultiplying this equation by j/(°), with j # [, and noting
that j’(O)Al2)l(0) = Alg)j’(o)l(o) = 0 (because eigenvectors
are orthogonal), we obtain j’(o)(Al(l)Po — PV P))PylM) =
0. Using the identity /(A Py — PV Py) = /@A —

Agl)), we can write the above equation as

7O (A Py = PV Py ) Pl
= 7O - Al PI®
_ (Agl) _ Aj('l)) 5O =g,

Because perturbations remove degeneracy, i.e., A;l) * Agl),
the previous equation yields: j/()1(V) = 0; that is, perturba-
tions in one eigenvector are orthogonal to the other eigenvec-
tors. Therefore, the conditional probability of the unperturbed
eigenvector given the perturbed eigenvector will be 1.
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