2,108 research outputs found

    Exploring Image Virality in Google Plus

    Full text link
    Reactions to posts in an online social network show different dynamics depending on several textual features of the corresponding content. Do similar dynamics exist when images are posted? Exploiting a novel dataset of posts, gathered from the most popular Google+ users, we try to give an answer to such a question. We describe several virality phenomena that emerge when taking into account visual characteristics of images (such as orientation, mean saturation, etc.). We also provide hypotheses and potential explanations for the dynamics behind them, and include cases for which common-sense expectations do not hold true in our experiments.Comment: 8 pages, 8 figures. IEEE/ASE SocialCom 201

    The Garden of Forking Paths: Observing Dynamic Parameters Distribution in Large Language Models

    Full text link
    A substantial gap persists in understanding the reasons behind the exceptional performance of the Transformer architecture in NLP. A particularly unexplored area involves the mechanistic description of how the distribution of parameters evolves over time during training. In this work we suggest that looking at the time evolution of the statistic distribution of model parameters, and specifically at bifurcation effects, can help understanding the model quality, potentially reducing training costs and evaluation efforts and empirically showing the reasons behind the effectiveness of weights sparsification.Comment: 15 page

    Deep Feelings: A Massive Cross-Lingual Study on the Relation between Emotions and Virality

    Get PDF
    ABSTRACT This article provides a comprehensive investigation on the relations between virality of news articles and the emotions they are found to evoke. Virality, in our view, is a phenomenon with many facets, i.e. under this generic term several different effects of persuasive communication are comprised. By exploiting a high-coverage and bilingual corpus of documents containing metrics of their spread on social networks as well as a massive affective annotation provided by readers, we present a thorough analysis of the interplay between evoked emotions and viral facets. We highlight and discuss our findings in light of a cross-lingual approach: while we discover differences in evoked emotions and corresponding viral effects, we provide preliminary evidence of a generalized explanatory model rooted in the deep structure of emotions: the Valence-Arousal-Dominance (VAD) circumplex. We find that viral facets appear to be consistently affected by particular VAD configurations, and these configurations indicate a clear connection with distinct phenomena underlying persuasive communication

    Toward Stance-based Personas for Opinionated Dialogues

    Full text link
    In the context of chit-chat dialogues it has been shown that endowing systems with a persona profile is important to produce more coherent and meaningful conversations. Still, the representation of such personas has thus far been limited to a fact-based representation (e.g. "I have two cats."). We argue that these representations remain superficial w.r.t. the complexity of human personality. In this work, we propose to make a step forward and investigate stance-based persona, trying to grasp more profound characteristics, such as opinions, values, and beliefs to drive language generation. To this end, we introduce a novel dataset allowing to explore different stance-based persona representations and their impact on claim generation, showing that they are able to grasp abstract and profound aspects of the author persona.Comment: Accepted at Findings of EMNLP 202

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    Glitter or Gold? Deriving Structured Insights from Sustainability Reports via Large Language Models

    Full text link
    Over the last decade, several regulatory bodies have started requiring the disclosure of non-financial information from publicly listed companies, in light of the investors' increasing attention to Environmental, Social, and Governance (ESG) issues. Publicly released information on sustainability practices is often disclosed in diverse, unstructured, and multi-modal documentation. This poses a challenge in efficiently gathering and aligning the data into a unified framework to derive insights related to Corporate Social Responsibility (CSR). Thus, using Information Extraction (IE) methods becomes an intuitive choice for delivering insightful and actionable data to stakeholders. In this study, we employ Large Language Models (LLMs), In-Context Learning, and the Retrieval-Augmented Generation (RAG) paradigm to extract structured insights related to ESG aspects from companies' sustainability reports. We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights. These analyses revealed that ESG criteria cover a wide range of topics, exceeding 500, often beyond those considered in existing categorizations, and are addressed by companies through a variety of initiatives. Moreover, disclosure similarities emerged among companies from the same region or sector, validating ongoing hypotheses in the ESG literature. Lastly, by incorporating additional company attributes into our analyses, we investigated which factors impact the most on companies' ESG ratings, showing that ESG disclosure affects the obtained ratings more than other financial or company data

    Countering Misinformation via Emotional Response Generation

    Full text link
    The proliferation of misinformation on social media platforms (SMPs) poses a significant danger to public health, social cohesion and ultimately democracy. Previous research has shown how social correction can be an effective way to curb misinformation, by engaging directly in a constructive dialogue with users who spread -- often in good faith -- misleading messages. Although professional fact-checkers are crucial to debunking viral claims, they usually do not engage in conversations on social media. Thereby, significant effort has been made to automate the use of fact-checker material in social correction; however, no previous work has tried to integrate it with the style and pragmatics that are commonly employed in social media communication. To fill this gap, we present VerMouth, the first large-scale dataset comprising roughly 12 thousand claim-response pairs (linked to debunking articles), accounting for both SMP-style and basic emotions, two factors which have a significant role in misinformation credibility and spreading. To collect this dataset we used a technique based on an author-reviewer pipeline, which efficiently combines LLMs and human annotators to obtain high-quality data. We also provide comprehensive experiments showing how models trained on our proposed dataset have significant improvements in terms of output quality and generalization capabilities.Comment: Accepted to EMNLP 2023 main conferenc
    • …
    corecore