22 research outputs found

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted

    Early Relapse in ALL Is Identified by Time to Leukemia in NOD/SCID Mice and Is Characterized by a Gene Signature Involving Survival Pathways

    No full text
    We investigated the engraftment properties and impact on patient outcome of 50 pediatric acute lymphoblastic leukemia (ALL) samples transplanted into NOD/SCID mice. Time to leukemia (TTL) was determined for each patient sample engrafted as weeks from transplant to overt leukemia. Short TTL was strongly associated with high risk for early relapse, identifying an independent prognostic factor. This high-risk phenotype is reflected by a gene signature that upon validation in an independent patient cohort (n = 197) identified a high-risk cluster of patients with early relapse. Furthermore, the signature points to independent pathways, including mTOR, involved in cell growth and apoptosis. The pathways identified can directly be targeted, thereby offering additional treatment approaches for these high-risk patients

    GC-MS-Olfactometric Differentiation of Aroma-Active Compounds in Turkish Heat-Treated Sausages by Application of Aroma Extract Dilution Analysis

    No full text
    Aroma and aroma-active compounds of the heat-treated Turkish sausages obtained from beef, turkey, and chicken meats were studied. Aroma compounds were isolated by using solvent-assisted flavor evaporation and analyzed by gas chromatography/mass spectrometry-olfactometry (GC-MS-O) for the first time. A total of 47, 63, and 64 aroma compounds, including esters, terpenes, terpenols, aldehydes, phenols, ketones, acids, alcohols, lactones, furans, sulfur compounds, and pyrazines, were identified and quantified in the beef, turkey, and chicken sausages, respectively. The most prominent differences between the sausage samples were as follows: (E)-sabinene hydrate, ß-cubebene, 2-hexanol, 5-methyl-2-heptanol, 2-heptanol, 2-nonanol, 4-methyl-3-hexanol, and heptanoic acid were detected only in chicken sausage samples; (Z)-p-mentha-1(7)8-dien-2-ol, dimethylallyl alcohol, 1,2-ethanediol, furfuryl alcohol, furfural, 2-ethyl-6-methylpyrazine, trimethyl pyrazine, and 2(5H)-furanone were detected only in turkey sausage samples; and 2-butoxyethanol, octanoic acid, and nonanoic acid were detected only in beef sausage samples. The aroma-active compounds of sausages were elucidated by using aroma extract dilution analysis (AEDA) for the first time. A combined total of 31 different aroma-active compounds were detected. The aroma-actives with the greatest flavor dilution (FD) factors in beef (FD 1024 and odor activity value (OAV) 178.07), and chicken (FD 2048 and OAV 262.63) sausages were ?-terpinene, and in turkey (FD 2048 and OAV 353.86) sausages were linalool. © 2018, Springer Science+Business Media, LLC, part of Springer Nature
    corecore