666 research outputs found

    "Metabolic staging" after major trauma - a guide for clinical decision making?

    Get PDF
    Metabolic changes after major trauma have a complex underlying pathophysiology. The early posttraumatic stress response is associated with a state of hyperinflammation, with increased oxygen consumption and energy expenditure. This hypercatabolic state must be recognized early and mandates an early nutritional management strategy. A proactive concept of early enteral "immunonutrition" in severely injured patients, is aimed at counterbalancing the negative aspects of hyperinflammation and hypercatabolism in order to reduce the risk of late complications, including infections and posttraumatic organ failure. Recently, the concept of "metabolic staging" has been advocated, which takes into account the distinct inflammatory phases and metabolic phenotypes after major trauma, including the "ischemia/reperfusion phenotype", the "leukocytic phenotype", and the "angiogenic phenotype". The potential clinical impact of metabolic staging, and of an appropriately adapted "metabolic control" and nutritional support, remains to be determined

    Metastatic non-small-cell lung cancer: consensus on pathology and molecular tests, first-line, second-line, and third-line therapy: 1st ESMO Consensus Conference in Lung Cancer; Lugano 2010

    Get PDF
    The 1st ESMO Consensus Conference on lung cancer was held in Lugano, Switzerland on 21 and 22 May 2010 with the participation of a multidisciplinary panel of leading professionals in pathology and molecular diagnostics, medical oncology, surgical oncology and radiation oncology. Before the conference, the expert panel prepared clinically relevant questions concerning five areas: early and locally advanced non-small-cell lung cancer (NSCLC), first-line metastatic NSCLC, second-/third-line NSCLC, NSCLC pathology and molecular testing, and small-cell lung cancer to be addressed through discussion at the Consensus Conference. All relevant scientific literature for each question was reviewed in advance. During the Consensus Conference, the panel developed recommendations for each specific question. The consensus agreement on three of these areas: NSCLC pathology and molecular testing, the treatment of first-line, and second-line/third-line therapy in metastatic NSCLC are reported in this article. The recommendations detailed here are based on an expert consensus after careful review of published data. All participants have approved this final updat

    A Mathematical Model for Outgassing and Contamination

    Get PDF
    A model for the mathematical description of the processes of outgassing and contamination in a vacuum system is proposed. The underlying assumptions are diffusion in the source, convection and diffusion in the cavity, mass transfer across the source-cavity interface, and a generalization of the Langmuir isotherm for the sorption kinetics on the target. Three approximations are considered where the asymptotic behavior of the model for large time is shown as well as the dependence and sensitivity of the model on some of the parameters. Some numerical examples of the full model are then presented together with a proof of the uniqueness of the solution
    corecore