5,162 research outputs found

    Correlated charge polarization in a chain of coupled quantum dots

    Full text link
    Coherent charge transfer in a linear array of tunnel-coupled quantum dots, electrostatically coupled to external gates, is investigated using the Bethe ansatz for a symmetrically biased Hubbard chain. Charge polarization in this correlated system is shown to proceed via two distinct processes: formation of bound states in the metallic phase, and charge transfer processes corresponding to a superposition of antibound states at opposite ends of the chain in the Mott-insulating phase. The polarizability in the insulating phase of the chain exhibits a universal scaling behavior, while the polarization charge in the metallic phase of the model is shown to be quantized in units of e/2e/2.Comment: 9 pages, 3 figures, 1 tabl

    Simple model for decay of superdeformed nuclei

    Full text link
    Recent theoretical investigations of the decay mechanism out of a superdeformed nuclear band have yielded qualitatively different results, depending on the relative values of the relevant decay widths. We present a simple two-level model for the dynamics of the tunneling between the superdeformed and normal-deformed bands, which treats decay and tunneling processes on an equal footing. The previous theoretical results are shown to correspond to coherent and incoherent limits of the full tunneling dynamics. Our model accounts for experimental data in both the A~150 mass region, where the tunneling dynamics is coherent, and in the A~190 mass region, where the tunneling dynamics is incoherent.Comment: 4 page

    Stability of Metal Nanowires at Ultrahigh Current Densities

    Full text link
    We develop a generalized grand canonical potential for the ballistic nonequilibrium electron distribution in a metal nanowire with a finite applied bias voltage. Coulomb interactions are treated in the self-consistent Hartree approximation, in order to ensure gauge invariance. Using this formalism, we investigate the stability and cohesive properties of metallic nanocylinders at ultrahigh current densities. A linear stability analysis shows that metal nanowires with certain {\em magic conductance values} can support current densities up to 10^11 A/cm^2, which would vaporize a macroscopic piece of metal. This finding is consistent with experimental studies of gold nanowires. Interestingly, our analysis also reveals the existence of reentrant stability zones--geometries that are stable only under an applied bias.Comment: 12 pages, 6 figures, version published in PR

    Variability and uncertainty in empirical ground-motion prediction for probabilistic hazard and risk analyses

    Get PDF
    © The Author(s) 2015.The terms aleatory variability and epistemic uncertainty mean different things to people who routinely use them within the fields of seismic hazard and risk analysis. This state is not helped by the repetition of loosely framed generic definitions that actually inaccurate. The present paper takes a closer look at the components of total uncertainty that contribute to ground-motion modelling in hazard and risk applications. The sources and nature of uncertainty are discussed and it is shown that the common approach to deciding what should be included within hazard and risk integrals and what should be pushed into logic tree formulations warrants reconsideration. In addition, it is shown that current approaches to the generation of random fields of ground motions for spatial risk analyses are incorrect and a more appropriate framework is presented

    Many-body theory of electronic transport in single-molecule heterojunctions

    Full text link
    A many-body theory of molecular junction transport based on nonequilibrium Green's functions is developed, which treats coherent quantum effects and Coulomb interactions on an equal footing. The central quantity of the many-body theory is the Coulomb self-energy matrix ΣC\Sigma_{\rm C} of the junction. ΣC\Sigma_{\rm C} is evaluated exactly in the sequential tunneling limit, and the correction due to finite tunneling width is evaluated self-consistently using a conserving approximation based on diagrammatic perturbation theory on the Keldysh contour. Our approach reproduces the key features of both the Coulomb blockade and coherent transport regimes simultaneously in a single unified transport theory. As a first application of our theory, we have calculated the thermoelectric power and differential conductance spectrum of a benzenedithiol-gold junction using a semi-empirical π\pi-electron Hamiltonian that accurately describes the full spectrum of electronic excitations of the molecule up to 8--10eV.Comment: 13 pages, 7 figure

    Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

    Full text link
    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.Comment: Replaced with published version; 5 page

    Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires

    Full text link
    A stability analysis of metal nanowires shows that a Jahn-Teller deformation breaking cylindrical symmetry can be energetically favorable, leading to stable nanowires with elliptic cross sections. The sequence of stable cylindrical and elliptical nanowires allows for a consistent interpretation of experimental conductance histograms for alkali metals, including both the shell and supershell structures. It is predicted that for gold, elliptical nanowires are even more likely to form since their eccentricity is smaller than for alkali metals. The existence of certain metastable ``superdeformed'' nanowires is also predicted
    corecore