
Chapter 4

Variability and Uncertainty in Empirical
Ground-Motion Prediction for Probabilistic
Hazard and Risk Analyses

Peter J. Stafford

Abstract The terms aleatory variability and epistemic uncertainty mean different
things to people who routinely use them within the fields of seismic hazard and risk
analysis. This state is not helped by the repetition of loosely framed generic
definitions that actually inaccurate. The present paper takes a closer look at the
components of total uncertainty that contribute to ground-motion modelling in
hazard and risk applications. The sources and nature of uncertainty are discussed
and it is shown that the common approach to deciding what should be included
within hazard and risk integrals and what should be pushed into logic tree formu-
lations warrants reconsideration. In addition, it is shown that current approaches to
the generation of random fields of ground motions for spatial risk analyses are
incorrect and a more appropriate framework is presented.

4.1 Introduction

Over the past few decades a very large number of empirical ground-motion models
have been developed for use in seismic hazard and risk applications throughout the
world, and these contributions to engineering seismology collectively represent a
significant body of literature. However, if one were to peruse this literature it would,
perhaps, not be obvious what the actual purpose of a ground-motion model is. A
typical journal article presenting a new ground-motion model starts with a brief
introduction, proceeds to outlining the dataset that was used, presents the functional
form that is used for the regression analysis along with the results of this analysis,
shows some residual plots and comparisons with existing models and then wraps up
with some conclusions. In a small number of cases this pattern is broken by the
authors giving some attention to the representation of the standard deviation of the
model. Generally speaking, the emphasis is very much upon the development and
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behaviour of the median predictions of these models and the treatment of the
standard deviation (and its various components) is very minimal in comparison.
If it is reasonable to suspect that this partitioning of effort in presenting the model
reflects the degree of effort that went into developing the model then there are two
important problems with this approach: (1) the parameters of the model for the
median predictions are intrinsically linked to the parameters that represent the
standard deviation – they cannot be decoupled; and (2) it is well known from
applications of ground-motion models in hazard and risk applications that the
standard deviation exerts at least as much influence as the median predictions for
return periods of greatest interest.

The objective of the present article is to work against this trend by focussing
almost entirely upon the uncertainty associated with ground-motion predictions.
Note that what is actually meant by ‘uncertainty’ will be discussed in detail in
subsequent sections, but the scope includes the commonly referred to components
of aleatory variability and epistemic uncertainty. Furthermore, the important con-
siderations that exist when one moves from seismic hazard analysis into seismic
risk analysis will also be discussed.

As noted in the title of the article, the focus herein is upon empirical ground-
motion models and discussion of the uncertainties associated with stochastic
simulation-based models, or seismological models is not within the present scope.
That said, some of the concepts that are dealt with herein are equally applicable to
ground-motion models in a more general sense.

While at places in the article reference will be made to peak ground acceleration
or spectral acceleration, the issues discussed here at not limited to these intensity
measures. For the particular examples that are presented, although the extent of
various effects will be tied to the choice of intensity measure, the emphasis is upon
the underlying concept rather than the numerical results.

4.2 Objective of Ground-Motion Prediction

In both hazard and risk applications the objective is usually to determine how
frequently a particular state is exceeded. For hazard, this state is commonly a level
of an intensity measure at a site, while for risk applications the state could be related
to a level demand on a structure, a level of damage induced by this demand, or the
cost of this damage and its repair, among others. In order to arrive at estimates of
these rates (or frequencies) of exceedance it is not currently possible to work with
empirical data related to the state of interest as a result of insufficient empirical
constraint. For example, if one wished to compute an estimate of the annual rate at
which a level of peak ground acceleration is exceeded at a site then an option in an
ideal world would be to assume that the seismogenic process is stationary and that
what has happened in the past is representative of what might happen in the future.
On this basis, counting the number of times the state was exceeded and dividing this
by the temporal length of the observation period would provide an estimate of the
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exceedance rate. Unfortunately, there is not a location on the planet for which this
approach would yield reliable estimates for return periods of common interest.

To circumvent the above problem hazard and risk analyses break down the
process of estimating rates of ground-motions into two steps: (1) estimate the
rates of occurrence of particular earthquake events; and (2) estimate the rate of
exceedance of a particular state of ground motion given this particular earthquake
event. The important point to make here is that within hazard and risk applications
the role of an empirical ground-motion model is to enable this second step in which
the rate of exceedance of a particular ground-motion level is computed for a given
earthquake scenario. The manner in which these earthquake scenarios are (or can
be) characterised has a strong impact upon how the ground-motion models can be
developed. For example, if the scenario can only be characterised by the magnitude
of the event and its distance from the site then it is only meaningful to develop the
ground-motion model as a function of these variables.

To make this point more clear, consider the discrete representation of the
standard hazard integral for a site influenced by a single seismic source:

λY>y* ¼ ν
XK

k¼1

XJ

j¼1

P Y > y*
!!m j, rk

" #
P M ¼ m j,R ¼ rk
" #

ð4:1Þ

where, Y is a random variable representing the ground-motion measure of interest,
y * is a particular value of this measure, ν is the annual rate of occurrence of
earthquakes that have magnitudes greater than some minimum value of interest,
and M and R generically represent magnitude and distance, respectively. If we
factor out the constant parameter ν, then we have an equation in terms of proba-
bilities and we can see that the objective is to find:

P Y > y*½ % ¼
λY>y*

ν
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When we discuss the uncertainty associated with ground-motion models it is
important to keep this embedding framework in mind. The framework shows that

the role of a ground-motion model is to define the distribution f
Y
!!m, r y

!!m, r
$ %

of

levels of motion that can occur for a given earthquake scenario, defined in this case
by m and r. The uncertainty that is ultimately of interest to us relates to the estimate
ofP Y > y*½ % and this depends upon the uncertainty in the ground-motion prediction
as well as the uncertainty in the definition of the scenario itself.

For seismic hazard analysis, the ground-motion model alone is sufficient to
provide the univariate distribution of the intensity measure for a given earthquake
scenario. However, for seismic risk applications, a typical ground-motion model
may need to be coupled with a model for spatial, and potentially spectral,
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correlations in order to define a multivariate conditional distribution of motions at
multiple locations (and response periods) over a region.

At a given site, both in hazard and risk applications, the conditional distribution
of ground-motions (assuming spectral acceleration as the intensity measure) given a
scenario is assumed to be lognormal and is defined as:

lnSa & N μlnSa; σ
2
lnSa

$ %
ð4:3Þ

where the moments of the distribution are specific to the scenario in question, i.e.,
μlnSa'μlnSa m; r; . . .ð Þ and σlnSa'σlnSa m; r; . . .ð Þ. The probability of exceeding a
given level of motion for a scenario is therefore defined using the cumulative
standard normal distribution Φ(z):

P Sa > Sa*
!!m, r, . . .

" #
¼ 1(Φ

lnSa*( μlnSa
σlnSa

& '
ð4:4Þ

The logarithmic mean μln Sa and standard deviation σln Sa for a scenario would differ
for hazard and risk analyses as in the former case one deals with the marginal
distribution of the motions conditioned upon the given the scenario while in the
latter case one works with the conditional distribution of the motions, conditioned
upon both the given scenario and the presence of a particular event term for the
scenario. That is, in portfolio risk analysis one works at the level of inter-event
variability and intra-event variability while for hazard analysis one uses the total
variability.

An empirical ground-motion model must provide values of both the logarithmic
mean μln Sa and the standard deviation σln Sa in order to enable the probability
calculations to be made and these values must be defined in terms of the predictor
variables M and R, among potentially others. Both components of the distribution
directly influence the computed probabilities, but can exert greater or lesser influ-
ence upon the probability depending upon the particular value of ln Sa *.

4.3 Impact of Bias in Seismic Hazard and Risk

Equation (4.4) is useful to enable one to understand how the effects of bias in
ground-motion models would influence the contributions to hazard and risk esti-
mates. The computation of probabilities of exceedance is central to both cases.
Imagine that we assume that any given ground-motion model is biased for a
particular scenario in that the predicted median spectral accelerations differ from
an unknown true value by a factor γμ and that the estimate of the aleatory variability
also differs from the true value by a factor of γσ. To understand the impact of these
biases upon the probability computations we can express Eq. (4.4) with explicit

100 P.J. Stafford



inclusion of these bias factors as in Eq. (4.5). Now we recognise that the probability

that we compute is an estimate and denote this as P̂ .

P̂ Sa > Sa*
!!m, r, . . .

" #
¼ 1(Φ

lnSa*( lnγμ ( μlnSa
γσσlnSa

& '
ð4:5Þ

This situation is actually much closer to reality than Eq. (4.4). For many scenarios
predictions of motions will be biased by some unknown degree and it is important
to understand how sensitive our results are to these potential biases. The influence
of the potential bias in the logarithmic standard deviation is shown in Fig. 4.1. The
case shown here corresponds to an exaggerated example in which the bias factor is
either γσ ¼ 2 or γσ ¼ 1=2.

What sort of bias could one expect to be reasonable for a given ground-motion
model? This is a very difficult question to answer in any definitive way, but one way
to get a feel for this is to compare the predictions of both median logarithmic
motions and logarithmic standard deviations for two generations of modern ground-
motion models. In particular, the very recent release of the models from the second
phase of the PEER NGA project (NGA West 2) provides one with the ability to
compare the predictions from the NGA West 1 and NGA West 2 studies.

Figures 4.2 and 4.3 show these estimates of the possible extent of bias for the
ground-motion models of Campbell and Bozorgnia (2008, 2014) and Chiou and
Youngs (2008, 2014). It should be noted that the point here is not that these models
are necessarily biased, but that it is reasonable to assume that the 2014 versions are
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Fig. 4.1 Illustration of the effect that a bias in the logarithmic standard deviation has upon the
computation of probabilities of exceedance. The left panel corresponds to γσ ¼ 2 while the right
panel shows γσ ¼ 1=2
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less biased than their 2008 counterparts. Therefore, the typical extent of bias that
has existed through the use of the 2008 NGA models over the past few years can be
characterised through plots like those shown in Figs. 4.2 and 4.3. However, in order
to see how these differences in predicted moments translate into differences in
hazard estimates the following section develops hazard results for a simple aca-
demic example.

4.3.1 Probabilistic Seismic Hazard Analysis

A probabilistic seismic hazard analysis is conducted using the ground-motion
models of Campbell and Bozorgnia (2008, 2014) as well as those of Chiou and
Youngs (2008, 2014). The computations are conducted for a hypothetical case of a
site located in the centre of a circular source. The seismicity is described by a
doubly-bounded exponential distribution with a b-value of unity and minimum and
maximum magnitudes of 5 and 8 respectively. The maximum distance considered
in the hazard integrations is 100 km. For this exercise, the depths to the top of the
ruptures for events of all magnitudes are assumed to be the same and it is also
assumed that the strike is perpendicular to the line between the site and the closest
point on the ruptures. All ruptures are assumed to be for strike-slip events and the
site itself is characterised by an average shear-wave velocity over the uppermost
30 m of 350 m/s. Note that these assumptions are equivalent to ignoring finite
source dimensions and working with a point-source representation. For the
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Fig. 4.2 Example bias factors computed as the ratios between predictions of two generations of
models from the same developers. The left panel shows ratios between the medians,
Sa T ¼ 0:01sð Þ, of Campbell and Bozorgnia (2014, 2008) – 2014:2008, while the right panel is
for Chiou and Youngs (2014, 2008) – 2014:2008
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purposes of this exercise, this departure from a more realistic representation does
not influence the point that is being made.

Hazard curves for spectral acceleration at a response period of 0.01 s are
computed through the use of the standard hazard integral in Eq. (4.6).

λY>y* ¼
X

i¼1

νi

ZZ
P Y > y*

!!m, r
" #

f M,R m; rð Þdmdr ð4:6Þ

For this particular exercise we have just one source ( i ¼ 1 ) and will also
appreciate that νi simply scales the hazard curve linearly and so using ν1 ¼ 1
enables us to convert the annual rates of exceedance λY>y* directly into annual
probabilities of exceedance.

Hazard curves computed according to this equation are shown in Fig. 4.4. The
curves show that for long return periods the hazard curves predicted by both models
of Campbell and Bozorgnia are very similar while at short return periods there are
significant differences between the two versions of their model. From consideration
of Figs. 4.2 and 4.3 we can see that the biggest differences between the two versions
of the Campbell and Bozorgnia model for the scenarios of relevance to this exercise
(T ¼ 0:01 seconds and VS, 30 ¼ 350m/s) are at small magnitudes between roughly
Mw5.0 and Mw5.5 where the new model predicts significantly smaller median
motions but also has a much larger standard deviation for these scenarios. As will
be shown shortly, both of these effects lead to a reduction in the hazard estimates for
these short return periods.

In contrast, the two versions of the Chiou and Youngs model compare
favourably for the short return periods but then exhibit significant differences as
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Fig. 4.3 Example bias factors for the logarithmic standard deviations. The left panel shows ratios
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right panel shows the ratios for Chiou and Youngs (2014, 2008) – 2014:2008. The standard
deviations are for a period of 0.01 s
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one moves to longer return periods. Again making use of Figs. 4.2 and 4.3 we
can see that the latest version of their model provides a relatively consistent, yet
mild (γμ ) 1:0( 1:1), increase in motions over the full magnitude-distance space

considered here and that we have a 15–20 % increase in the standard deviation over
this full magnitude-distance space. Again, from the developments that follow, we
should expect to observe the differences between the hazard curves at these longer
return periods.

We have just seen how bias factors for the logarithmic mean γμ and logarithmic
standard deviation γσ can influence the computation of estimates of the probability
of exceedance for a given scenario. The hazard integral in Eq. (4.6) is simply a
weighted sum over all relevant scenarios as can be seen from the approximation
(that this ceases to be an approximation in the limit as Δm,Δr ! 0):

λY>y* )
X

i¼1

vi
X

j

X

k

P Y > y* m j; rk
!!" #

f M,R m j; rk
$ %

ΔmΔr ð4:7Þ

If we now accept that when using a ground-motion model we will only obtain an
estimate of the annual rate of exceedance we can write:
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!!" #
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ΔmΔr ð4:8Þ

where now this expression is a function of the bias factors for both the logarithmic
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104 P.J. Stafford



motions for every scenario. One can consider the effects of systematic bias from the
ground motion model expressed through factors modifying the conditional mean
and standard deviation for a scenario. The biases in this case hold equally for all
scenarios (although this can be relaxed). At least for the standard deviation, this
assumption is not bad given the distributions shown in Fig. 4.3.

Therefore, for each considered combination of mj and rk we can define our
estimate of the probability of exceeding y * from Eq. (4.5). Note that the bias in
the median ground motion is represented by a factor γμ multiplying the median

motion Ŝ a ¼ γμSa. This translates to an additive contribution to the logarithmic

mean leading to μlnSa þ lnγμ representing the biased median motion.

To understand how such systematic biases could influence hazard estimates we
can compute the partial derivatives with respect to these bias factors, considering
one source of bias at a time.
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which can be shown to be equivalent to:
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When these expressions are evaluated for the hypothetical scenario that we have
considered we obtain partial derivatives as shown in Fig. 4.5. The curves in this
figure show that the sensitivity of the hazard curve to changes in the mean pre-
dictions for the scenarios is most significant when there is relatively weak influence
from the standard deviation. That is, when the hazard curve is dominated by
contributions with epsilon values near zero then biases in the mean predictions
matter most strongly.

The scaling of the partial derivatives with respect to the bias in the standard
deviation is more interesting, and reflects the schematic result previously shown in
Fig. 4.1. We see that we have positive gradients for the larger spectral accelerations
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while we have negative gradients for weak motions. These ranges effectively
represent the positive and negative epsilon ranges that were shown explicitly in
the previous section. However, in this case we must recognise that when consider-
ing the derivative of the hazard curve that we have many different contributions for
epsilon values corresponding to a given target level of the intensity measure y * and
that the curves shown in Fig. 4.5 reflect a weighted average of the individual curves
that have the form shown in Fig. 4.1.

The utility of the partial derivative curves shown in Fig. 4.5 is that they enable
one to appreciate over which range of intensity measures (and hence return periods)
changes to either the median motion or logarithmic standard deviation will have the
greatest impact upon the shape of the hazard curves. Note that with respect to the
typical hazard curves shown in Fig. 4.4, these derivatives should be considered as
being in some sense orthogonal to the hazard curves. That is, they are not
representing the slope of the hazard curve (which is closely related to the annual
rate of occurrence of a given level of ground-motion), but rather saying that for any
given level of motion, how sensitive is the annual rate of exceedance to a change in
the logarithmic mean and standard deviation. It is clear from Fig. 4.4 that a change
in the standard deviation itself has a strong impact upon the actual nature of the
hazard curve at long return periods, whereas the sensitivity indicated in Fig. 4.5 is
low for the corresponding large motions. However, it should be born in mind that

these partial derivatives are ∂λ̂ =∂γi rather than, say, ∂lnλ̂ =∂γi and that the
apparently low sensitivity implied by Fig. 4.6 should be viewed in terms of the

fact that small changesΔλ̂ are actually very significant when the value of λ̂ itself is
very small over this range.
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Another way of making use of these partial derivatives is to compare the relative
sensitivity of the hazard curve to changes in the logarithmic mean and standard
deviation. This relative sensitivity can be computed by taking the ratio of the partial
derivatives with respect to both the standard deviation and the mean and then seeing
the range of return periods (or target levels of the intensity measure) for which one
or the other partial derivative dominates. Ratios of this type are computed for this
hypothetical scenario and are shown in Fig. 4.6. When ratios greater than one are
encountered the implication is that the hazard curves are more sensitive to changes
in the standard deviation than they are to changes in the mean. As can be seen from
Fig. 4.6, this situation arises as the return period increases. However, for the
example shown here (which is fairly typical of active crustal regions in terms of
the magnitude-frequency distribution assumed) the influence of the standard devi-
ation tends to be at least as important as the median, if not dominant, at return
periods of typical engineering interest (on the order of 475 years or longer).

The example just presented has highlighted that ground-motion models must
provide estimates of both the logarithmic mean and standard deviation for any
given scenario, and that in many cases the ability to estimate the standard deviation
is at least as important as the estimate of the mean. Historically, however, the
development of ground-motion models has focussed overwhelmingly upon the
scaling of median predictions, with many people (including some ground-motion
model developers) still viewing the standard deviation as being some form of error
in the prediction of the median rather than being an important parameter of the
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ground-motion distribution that is being predicted. The results presented for this
example here show that ground-motion model developers should shift the balance
of attention more towards the estimation of the standard deviation than what has
historically occurred.

4.3.2 Probabilistic Seismic Risk Analysis

When one moves to seismic risk analyses the treatment of the aleatory variability
can differ significantly. In the case that a risk analysis is performed for a single
structure the considerations of the previous section remain valid. However, for
portfolio risk assessment it becomes important to account for the various correla-
tions that exist with ground-motion fields for a given earthquake scenario. These
correlations are required for developing the conditional ground-motion fields that
correspond to a multivariate normal distribution.

The multivariate normal distribution represents the conditional random field of
relative ground-motion levels (quantified through normalised intra-event residuals)
conditioned upon the occurrence of an earthquake and the fact that this event will
generate seismic waves with a source strength that may vary from the expected
strength. The result of this source deviation is that all locations that register this
ground-motion will have originally had this particular level of source strength. This
event-to-event variation that systematically influences all sites is represented in
ground-motion models by the inter-event variability, while the conditional variation
of motions at a given site is given by the intra-event variability.

For portfolio risk analysis it is therefore important to decompose the total
aleatory variability in ground-motions into a component that reflects the source
strength (the inter-event variability) and a component that reflects the site-specific
aleatory variability (the intra-event variability). It should also be noted in passing
that this is not strictly equivalent to the variance decomposition that is performed
using mixed effects models in regression analysis.

When one considers ground-motion models that have been developed over
recent years it is possible to appreciate that some significant changes have occurred
to the value of the total aleatory variability that is used in hazard analysis, but also
to the decomposition of this total into the inter-event and intra-event components.
For portfolio risk analysis, this decomposition matters. To demonstrate why this is
the case, Fig. 4.7 compares conditional ground-motion fields that have been sim-
ulated for the 2011 Christchurch Earthquake in New Zealand. In each case shown,
the inter-event variability is assumed to be a particular fraction of the total vari-
ability and this fraction is allowed to range from 0 to 100 %. As one moves from a
low to a high fraction it is clear that the within event spatial variation of the ground-
motions reduces.

For portfolio risk assessment, these differences in the spatial variation are
important as the extreme levels of loss correspond to cases in which spatial regions
of high-intensity ground-motion couple with regions of high vulnerability and
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exposure. The upper left panel of Fig. 4.7 shows a clear example of this where a
patch of high intensity is located in a region of high exposure.

In addition to ensuring that the total aleatory variability is well-estimated, it is
therefore also very important (for portfolio risk analysis) to ensure that the
partitioning of the total variability between inter- and intra-event components is
done correctly.

4.4 Components of Uncertainty

The overall uncertainty in ground-motion prediction is often decomposed into
components of Aleatory Variability and Epistemic Uncertainty. In the vast majority
of applications only these two components are considered and they are defined in
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such as way that the aleatory variability is supposed to represent inherent random-
ness in nature while epistemic uncertainties represent contributions resulting from
our lack of knowledge. The distinction is made for more than semantic reasons and
the way that each of these components is treated within hazard and risk analysis
differ. Using probabilistic seismic hazard analysis as an example, the aleatory
variability is directly accounted for within the hazard integral while epistemic
uncertainty is accounted for or captured through the use of logic trees.

However, when one constructs a logic tree the approach is to consider alternative
hypotheses regarding a particular effect, or component, within the analysis. Each
alternative is then assigned a weight that has been interpreted differently by various
researchers and practitioners, but is ultimately treated as a probability. No alterna-
tive hypotheses are considered for effects that we do not know to be relevant. That
is, the representation of epistemic uncertainty in a logic tree only reflects our
uncertainty regarding the components of the model that we think are relevant. If
we happen to be missing an important physical effect then we will never think to
include it within our tree and this degree of ignorance is never reflected in our
estimate of epistemic uncertainty.

It is therefore clear that there is a component of the overall uncertainty in our
analyses that is not currently accounted for. This component is referred to as
Ontological Uncertainty (Elms 2004) and represents the unknown unknowns
from the famous quote of Donald Rumsfeld.

These generic components of uncertainty are shown schematically in Fig. 4.8.
The actual numbers that are shown in this figure are entirely fictitious and the
objective is not to define this partitioning. Rather, the purpose of this figure is to
illustrate the following:

• What we currently refer to as being aleatory variability is not all aleatory
variability and instead contains a significant component of epistemic uncertainty
(which is why it reduces from the present to the near future)

• The fact that ontological uncertainty exists means that we cannot assign a
numerical value to epistemic uncertainty

• The passage of time allows certain components to be reduced

In the fields of seismic hazard and risk it is common for criticism to be made of
projects due to the improper handling of aleatory variability and epistemic uncer-
tainty by the analysts. However, the distinction between these components is not
always clear and this is at least in part a result of loose definitions of the terms as
well as a lack of understanding about the underlying motivation for the
decomposition.

As discussed at length by Der Kiureghian and Ditlevsen (2009), what is aleatory
or epistemic can depend upon the type of analysis that is being conducted. The
important point that Der Kiureghian and Ditlevsen (2009) stress is that the
categorisation of an uncertainty as either aleatory of epistemic is largely at the
discretion of the analyst and depends upon what is being modelled. The uncer-
tainties themselves are generally not properties of the parameter in question.
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4.4.1 Nature of Uncertainty

Following the more complete discussion provided by Der Kiureghian and Ditlevsen
(2009), consider the physical process that results in the generation of a ground
motion y for a particular scenario. The underlying basic variables that parameterise
this physical process can be written as X.

Now consider a perfect deterministic ground-motion model (i.e., one that makes
predictions with no error) that provides a mathematical description of the physical
link between these basic variables and the observed motion. In the case that we
knew the exact values of all basic variables for a given scenario we would write
such a model as:

y ¼ g x; θg
$ %

ð4:13Þ

where, here θg are the parameters or coefficients of the model. Note that the above
model must account for all relevant physical effects related to the generation of y. In
practice, we cannot come close to accounting for all relevant effects and so rather
than working with the full set X, we instead work with a reduced set Xk

(representing the known random variables) and accept that the effect of the
unknown basic variables Xu will manifest as differences between our now approx-
imate model ĝ and the observations. Furthermore, as we are working with an
observed value of y (which we assume to be known without error) we also need
to recognise that we will have an associated observed instance of Xk that is not
perfectly known xk. Our formulation is then written as:

y ¼ ĝ x̂k; θ̂g
$ %

þ ε ð4:14Þ

What is important to note here is that the residual error ε is the result of three
distinct components:

Fig. 4.8 Components of the total uncertainty in ground motion prediction, and their evolution in
time. The percentage values shown are entirely fictitious
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• The effect of unobserved, or not considered, variables Xu

• The imperfection of our mathematical model, both in terms of its functional

form and the estimation of its parameters θ̂ g

• The uncertainties associated with estimated known variables x̂ k

The imperfection referred to in the second point above means that the residual
error ε does not necessarily have a zero mean (as is the case for regression analysis).
The reason being that the application of imperfect physics does not mean that our
simplified model will be unbiased – both when applied to an entire ground-motion
database, but especially when applied to a particular scenario. Therefore, it could be
possible to break down the errors in prediction into components representing bias,

Δ ; x̂; θ̂g
$ %

, and variability, ε0:

ε ! Δ x̂; θ̂g
$ %

þ ε
0 ð4:15Þ

In the context seismic hazard and risk analysis, one would ordinarily regard the
variability represented by ε as being aleatory variability and interpret this as being
inherent randomness in ground motions arising from the physical process of
ground-motion generation. However, based upon the formulation just presented
one must ask whether any actual inherent randomness exists, or whether we are just
seeing the influence of the unexplained parameters xu. That is, should our starting
point have been:

y ¼ g x; θg
$ %

þ εA ð4:16Þ

where here the εA represents intrinsic randomness associated with ground motions.
When one considers this problem one must first think about what type of

randomness we are dealing with. Usually when people define aleatory variability
they make an analogy with the rolling of a die, but often they are unwittingly
referring to one particular type of randomness. There are broadly three classes of
randomness:

• Apparent Randomness: This is the result of viewing a complex deterministic
process from a simplified viewpoint.

• Chaotic Randomness: This randomness arises from nonlinear systems that
evolve from a particular state in a manner that depends very strongly upon that
state. Responses obtained from very slightly different starting conditions can be
markedly different from each other, and our inability to perfectly characterise a
particular state means that the system response is unpredictable.

• Inherent Randomness: This randomness is an intrinsic part of reality. Quantum
mechanics arguably provides the most pertinent example of inherent
randomness.

Note that there is also a subtle distinction that can be made between systems that
are deterministic, yet unpredictable, and systems that possess genuine randomness.
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In addition, some (including historically Einstein) argue that systems that possess
‘genuine randomness’ are actually driven by deterministic processes and variables
that we simply are not aware of. In this case, these systems would be subsumed
within the one or more of the other categories of apparent or chaotic randomness.
However, at least within the context of quantum mechanics, Bell’s theorem dem-
onstrates that the randomness that is observed at such scales is in fact inherent
randomness and not the result of apparent randomness.

For ground-motion modelling, what is generally referred to as aleatory variabil-
ity is at least a combination of both apparent randomness and chaotic randomness
and could possibly also include an element of inherent randomness – but there is no
hard evidence for this at this point. The important implication of this point is that
the component associated with apparent randomness is actually an epistemic
uncertainty that can be reduced through the use of more sophisticated models.
The following two sections provide examples of apparent and chaotic randomness.

4.4.2 Apparent Randomness – Simplified Models

Imagine momentarily that it is reasonable to assume that ground-motions arise from
deterministic processes but that we are unable to model all of these processes. We
are therefore required to work with simplified models when making predictions. To
demonstrate how this results in apparent variability consider a series of simplified
models for the prediction of peak ground acceleration (here denoted by y) as a
function of moment magnitude M and rupture distance R:

Model 0

lny ¼ β0 þ β1M ð4:17Þ

Model 1

lny ¼ β0 þ β1Mþ β2ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ β23

q
ð4:18Þ

Model 2

lny ¼ β0 þ β1Mþ β2ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ β23

q
þ β4lnVS, 30 ð4:19Þ

Model 3

lny ¼ β0 þ β1Mþ β1a M( 6:5ð Þ2 þ β2 þ β2a M( 6:5ð Þ½ %ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ β23

q

þ β4lnVS, 30 ð4:20Þ

4 Variability and Uncertainty in Empirical Ground-Motion Prediction for. . . 113



Model 4

lny ¼ β0 þ β1Mþ β1a M( 6:5ð Þ2 þ β2 þ β2a M( 6:5ð Þ½ %ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ β23

q

þ β4lnVS, 30 þ β5Fnm þ β6Frv

ð4:21Þ

Models 5 and 6

lny ¼ β0 þ β1Mþ β1a M( 6:5ð Þ2 þ β2 þ β2a M( 6:5ð Þ½ %ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ β23

q

þ β4lnVS, 30 þ β5Fnm þ β6Frv þ β7Fas

ð4:22Þ

where we see that the first of these models is overly simplified, but that by the time
we reach Models 5 and 6, we are accounting for the main features of modern
models. The difference between Models 5 and 6 is not in the functional form, but in
how the coefficients are estimated. Models 1–5 use standard mixed effects regres-
sion with one random effect for event effects. However, Model 6 includes this
random effect, but also distinguishes between these random effects depending upon
whether we have mainshocks or aftershocks and also partitions the intra-event
variance into components for mainshocks and aftershocks. The dataset consists of
2,406 records from the NGA database.

Figure 4.9 shows estimates of apparent randomness for each of these models,
assuming that Model 6 is ‘correct’. That is, the figure shows the difference between
the total standard deviation of Model i and Model 6 and because we assume the
latter model is correct, this difference in variance can be attributed to apparent
randomness. The figure shows that the inclusion of distance scaling and
distinguishing between mainshocks and aftershocks has a very large impact, but
that other additions in complexity provide a limited reduction in apparent random-
ness. The important point here is that this apparent randomness is actually epistemic
uncertainty – not aleatory as is commonly assumed.

4.4.3 Chaotic Randomness – Bouc-Wen Example

Chaotic randomness is likely to be a less-familiar concept than apparent random-
ness given that the latter is far more aligned with our normal definition of epistemic
uncertainty. To explain chaotic randomness in the limited space available here is a
genuine challenge, but I will attempt this through the use of an example based
heavily upon the work of Li and Meng (2007). The example concerns the response
of a nonlinear oscillator and is not specifically a ground-motion example. However,
this type of model has been used previously for characterising the effects of
nonlinear site response. I consider the nonlinear Bouc-Wen single-degree-of-free-
dom system characterised by the following equation:
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€uþ 2ζω0 _u þ αω2
0uþ 1( αð Þω2

0z ¼ B sin Ωtð Þ ð4:23Þ

where the nonlinear hysteretic response is defined by:

_z ¼ A _u ( γ
!! _u
!!z
!!z
!!n(1 ( β _u

!!z
!!n ð4:24Þ

This model is extremely flexible and can be parameterised so that it can be
applied in many cases of practical interest, but in the examples that follow we will
assume that we have a system that exhibits hardening when responding in a
nonlinear manner (see Fig. 4.10).

Now, if we subject this system to a harmonic excitation we can observe a
response at relatively low amplitudes that resembles that in Fig. 4.11. Here we
show the displacement response, the velocity response, the trajectory of the
response in the phase space (u( _u space) and the nonlinear restoring force. In all
cases the line colour shifts from light blue, through light grey and towards a dark red
as time passes. In all panels we can see the influence of the initial transient response
before the system settles down to a steady-state. In particular, we can see that we
reach a limit-cycle in the phase space in the lower left panel.

For Fig. 4.11 the harmonic amplitude isB ¼ 5 and we would find that if we were
to repeat the analysis for a loading with an amplitude slightly different to this value
that our response characteristics would also only be slightly different. For systems
in this low excitation regime we have predictable behaviour in that the effect of
small changes to the amplitude can be anticipated.

However, consider now a plot of the maximum absolute displacement and
maximum absolute velocity against the harmonic amplitude shown in Fig. 4.12.
Note that the response values shown in this figure correspond to what are essentially
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Fig. 4.9 Variation of apparent randomness associated with models of increasing complexity

4 Variability and Uncertainty in Empirical Ground-Motion Prediction for. . . 115



steady-state conditions. For this sort of system we expect that the transient terms
will decay according to exp (ζω0tð Þ and for these examples we have set ζ ¼ 0:05
and ω0 ¼ 1:0 and we only look at the system response after 200 s have passed in
order to compute the maximum displacement and velocity shown in Fig. 4.12. We

would expect that the transient terms would have decayed to less than 0:5+ 10(5 of
their initial amplitudes at the times of interest.

Figure 4.12 shows some potentially surprising behaviour for those not familiar
with nonlinear dynamics and chaos. We can see that for low harmonic amplitudes
we have a relatively smoothly varying maximum response and that system response
is essentially predictable here. However, this is not to say that the response does not
become more complex. For example, consider the upper row of Fig. 4.13 that shows
the response forB ¼ 15. Here we can see that the system tends towards some stable
state and that we have a stable limit-cycle in the phase space. However, it has a
degree of periodicity that corresponds to a loading/unloading phase for negative
restoring forces.

This complexity continues to increase as the harmonic amplitude increases as
can be seen in the middle row of Fig. 4.13 where we again have stable steady-state
response, but also have another periodic component of unloading/reloading for both
positive and negative restoring forces. While these figures show increased com-
plexity as we move along the harmonic amplitude axis of Fig. 4.12, the system
response remains stable and predictable in that we know that small changes in the
value of B continues to map into small qualitative and quantitative changes to the
response. However, Fig. 4.12 shows that once the harmonic amplitude reaches
values of roughlyB ¼ 53we suddenly have a qualitatively different behaviour. The
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system response now becomes extremely sensitive to the particular value of the
amplitude that we consider. The reason for this can be seen in the bottom row of
Fig. 4.13 in which it is clear that we never reach a stable steady state. What is
remarkable in this regime is that we can observe drastically different responses for
very small changes in amplitude of the forcing function. For example, when we
move from B ¼ 65:0 to B ¼ 65:1 we have transition back into a situation in which
we have a stable limit cycle (even if it is a complex cycle).

This lesson here is that for highly nonlinear processes there exist response
regimes where the particular response trajectory and system state depends very
strongly upon a prior state of the system. There are almost certainly aspects of the
ground-motion generation process that can be described in this manner. Although
these can be deterministic processes, as it is impossible to accurately define the state
of the system the best we can do is to characterise the observed chaotic randomness.
Note that although this is technically epistemic uncertainty, we have no choice but
to treat this as aleatory variability as it is genuinely irreducible.
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4.4.4 Randomness Represented by Ground-Motion Models

The standard deviation that is obtained during the development of a ground-motion
model definitely contains elements of epistemic uncertainty that can be regarded as
apparent randomness, epistemic uncertainty that is the result of imperfect metadata,

Fig. 4.13 Response of the nonlinear system for a harmonic amplitude of B ¼ 15 (top), B ¼ 35
(middle), and B ¼ 65 (bottom). Panels on the left show the response trajectory in phase space; and
panels on the right show the hysteretic response

4 Variability and Uncertainty in Empirical Ground-Motion Prediction for. . . 119



and variability that arises from the ergodic assumption. It is also almost certain that
the standard deviation reflects a degree of chaotic randomness and possibly also
includes some genuine randomness and it is only these components that are
actually, or practically, irreducible. Therefore, it is clear that the standard deviation
of a ground-motion model does not reflect aleatory variability as it is commonly
defined – as being ‘inherent variability’.

If the practical implications of making the distinction between aleatory and
epistemic are to dictate what goes into the hazard integral and what goes into the
logic tree then one might take the stance that of these contributors to the standard
deviation just listed we should look to remove the effects of the ergodic assumption
(which is attempted in practice), we should minimise the effects of metadata
uncertainty (which is not done in practice), and we should increase the sophistica-
tion of our models so that the apparent randomness is reduced (which some would
argue has been happening in recent years, vis-"a-vis the NGA projects).

An example of the influence of metadata uncertainty can be seen in the upper left
panel of Fig. 4.14 in which the variation in model predictions is shown when
uncertainties in magnitude and shear-wave velocity are considered in the regression
analysis. The boxplots in this figure show the standard deviations of the predictions
for each record in the NGA dataset when used in a regression analysis with Models
1–6 that were previously presented. The uncertainty that is shown here should be
regarded as a lower bound to the actual uncertainty associated with meta-data for
real ground-motion models. The estimates of this variable uncertainty are obtained
by sampling values of magnitude and average shear-wave velocity for each event
and site assuming a (truncated) normal and lognormal distribution respectively.
This simulation process enables a hypothetical dataset to be constructed upon
which a regression analysis is performed. The points shown in the figure then
represent the standard deviation of median predictions from each developed regres-
sion model.

Figure 4.14 also shows how an increase in model complexity is accompanied by
an increase in parametric uncertainty for the models presented previously. It should
be noted that these estimates of parametric uncertainty are also likely to be near
lower bounds given that the functional forms used for this exercise are relatively
simple and that the dataset is relatively large (consisting of 2,406 records from the
NGA database). The upper right panel of Fig. 4.14 shows this increasing parametric
uncertainty for the dataset used to develop the models, but the lower panel shows
the magnitude dependence of this parametric uncertainty when predictions are
made for earthquake scenarios that are not necessarily covered by the empirical
data. In this particular case, the magnitude dependence is shown when motions are
computed for a distance of just 1 km and a shear-wave velocity of 316 m/s is used. It
can be appreciated from this lower panel that the parametric uncertainty is a
function of both the model complexity but also of the particular functional form
adopted. The parametric uncertainty here is estimated by computing the covariance
matrix of the regression coefficients and then sampling from the multivariate
normal distribution implied by this covariance matrix. The simulated coefficients
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are then used to generate predictions for each recording and the points shown in this
panel represent the standard deviation of these predictions for every record.

Rather than finally looking to increase the complexity of the functional forms
that are used for ground-motion predictions, herein I propose that we look at this
problem in a different light and refer back to Eq. (4.2) in which we say explicitly
that what matters for hazard and risk is the overall estimate of ground-motion
exceedance and that this is the result of two components (not just the ground-
motion model). We should forget about trying to push the concept that only aleatory
variability should go into the hazard integral and rather take the viewpoint that our
optimal model (which is a model of the ground motion distribution – not median
predictions) should go into the hazard integral and that our uncertainties should then
be reflected in the logic tree. The reason why we should forget about only pushing

Fig. 4.14 Influence of meta-data uncertainty (upper left), increase in parametric uncertainty with
increasing complexity of models (upper right), and the dependence of parametric uncertainty upon
magnitude (bottom)
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aleatory variability into the hazard integral is that from a quantitative ground-
motion perspective we are still not close to understanding what is actually aleatory
and irreducible.

The proposed alternative of defining an optimal model is stated in the light of
minimising the uncertainty in the estimate of the probability of exceedance of
ground-motions. This uncertainty comes from two components: (1) our ability to
accurately define the probability of occurrence of earthquake scenarios; and (2) our
ability to make robust predictions of the conditional ground-motion distribution.
Therefore, while a more complex model will act to reduce the apparent variability,
if this same model requires the specification of a number of independent variables
that are poorly constrained in practice then the overall uncertainty will be large. In
such cases, one can obtain a lower level of overall uncertainty in the prediction of
ground-motion exceedance by using a less complex ground-motion model. A
practical example of this trade-off is related to the requirement to define the
depth distribution of earthquake events. For most hazard analyses this depth
distribution is poorly constrained and the inclusion of depth-dependent terms in
ground-motion models only provides a very small decrease in the apparent
variability.

Figure 4.15 presents a schematic illustration of the trade-offs between apparent
randomness (the epistemic uncertainty that is often regarded as aleatory variability)
and parametric uncertainty (the epistemic uncertainty that is usually ignored) that
exist just on the ground-motion modelling side. The upper left panel of this figure
shows, as we have seen previously, that the apparent randomness decreases as we
increase the complexity of our model. However, the panel also shows that this
reduction saturates once we reach the point where we have chaotic randomness,
inherent randomness, or a combination of these irreducible components. The upper
right panel, on the other hand, shows that as this model complexity increases we
also observe an increase in parametric uncertainty. The optimal model must balance
these two contributors to the overall uncertainty as shown in the lower left panel.
On this basis, one can identify an optimal model when only ground-motion model-
ling is considered. When hazard or risk is considered then the parametric uncer-
tainty shown here should reflect both the uncertainty in the model parameters
(governed by functional form complexity, and data constraints) and the uncertainty
associated with the characterisation of the scenario (i.e., the independent variables)
and its likelihood.

The bottom right panel of Fig. 4.15 shows how one can justify an increased
complexity in the functional form when the parametric uncertainty is reduced, as in
this case the optimal complexity shifts to the right. To my knowledge, these sorts of
considerations have never been explicitly made during the development of more
complex ground-motion models. Although, in some ways, the quantitative inspec-
tion of residual trends and of parameter p-values is an indirect way of assessing if
increased complexity is justified by the data.

Recent years have seen the increased use of external constraint during ground-
motion model development. In particular, numerical simulations are now com-
monly undertaken in order to constrain nonlinear site response scaling, large
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magnitude scaling, and near field effects. Some of the most recent models that have
been presented have very elaborate functional forms and the model developers have
justified this additional complexity on the basis of the added functional complexity
being externally constrained. In the context of Fig. 4.15, the implication is that the
model developers are suggesting that the red curves do not behave in this manner,
but rather that they saturate at some point as all of the increasing complexity does
not contribute to parametric uncertainty. On one hand, the model developers are
correct in that the application of external constraints does not increase the estimate
of the parametric uncertainty from the regression analysis on the free parameters.
However, on the other hand, in order to properly characterise the parametric
uncertainty the uncertainty associated with the models used to provide the external
constraint must also be accounted for. In reality this additional parametric uncer-
tainty is actually larger than what would be obtained from a regression analysis
because the numerical models used for these constraints are normally very complex
and involve a large number of poorly constrained parameters. Therefore, it is not
clear that the added complexity provided through the use of external constraints is
actually justified.
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4.5 Discrete Random Fields for Spatial Risk Analysis

The coverage thus far has been primarily focussed upon issues that arise most
commonly within hazard analysis, but that are also relevant to risk analysis.
However, in this final section the attention is turned squarely to a particular issue
associated with the generation of ground-motion fields for use in earthquake loss
estimation for spatially-distributed portfolios. This presentation is based upon the
work of Vanmarcke (1983) and has only previously been employed by
Stafford (2012).

The normal approach that is taken when performing risk analyses over large
spatial regions is to subdivide the region of interest into geographic cells (often
based upon geopolitical boundaries, such as districts, or postcodes). The generation
of ground-motion fields is then made by sampling from a multivariate normal
distribution that reflects the joint intra-event variability of epsilon values across a
finite number of sites equal to the number of geographic cells. The multivariate
normal distribution for epsilon values is correctly assumed to have a zero mean
vector, but the covariance matrix of the epsilon values is computed using a
combination of the point-to-point distances between the centroids of the cells
(weighted geographically, or by exposure) and a model for spatial correlation
between two points (such as that of Jayaram and Baker 2009). The problem with
this approach is that the spatial discretisation of the ground-motion field has been
ignored. The correct way to deal with this problem is to discretise the random field
to account for the nature of the field over each geographic cell and to define a
covariance matrix for the average ground-motions over the cells. This average level
of ground-motion over the cell is a far more meaningful value to pass into fragility
curves than a single point estimate.

Fortunately, the approach for discretisation of a two-dimensional random field is
well established (Vanmarcke 1983). The continuous field is denoted by ln y(x)
where y is the ground motion and x now denotes a spatial position. The logarithmic
motion at a point can be represented as a linear function of the random variable ε(x).
Hence, the expected value of the ground motion field at a given point is defined by
Eq. (4.25), where μln y is the median ground motion, and η is an event term.

E lny xð Þ½ % ¼ μlny þ ηþ E ε xð Þ½ % ð4:25Þ

Therefore, in order to analyse the random field of ground motions, attention need
only be given to the random field of epsilon values. Once this field is defined it may
be linearly transformed into a representation of the random field of spectral
ordinates.

In order to generate ground-motion fields that account for the spatial
discretisation, under the assumption of joint normality, we require three
components:

• An expression for the average mean logarithmic motion over a geographic cell
• An expression for the variance of motions over a geographic cell
• An expression for the correlation of average motions from cell-to-cell
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For the following demonstration, assume that the overall region for which we are
conducting the risk analysis is discretised into a regular grid aligned with the N-S
and E-W directions. This grid has a spacing (or dimension) in the E-W direction of
D1 and a spacing in the N-S direction of D2. Note that while the presentation that
follows concerns this regular grid, Vanmarcke (1983) shows how to extend this
treatment to irregularly shaped regions (useful for regions defined by postcodes or
suburbs, etc.).

Within each grid cell one may define the local average of the field by integrating
the field and dividing by the area of the cell (A ¼ D1D2).

lnyA ¼ 1

A

Z

A

lny xð Þdx ð4:26Þ

Now, whereas the variance of the ground motions for a single point in the field,
given an event term, is equal to σ2, the variance of the local average ln yA must be
reduced as a result of the averaging. Vanmarcke (1983) shows that this reduction
can be expressed as in Eq. (4.27).

σ2A ¼ γ D1;D2ð Þσ2 ! γ D1;D2ð Þ ¼ 1

D1D2

Z D2

(D2

Z D1

(D1

1( δ1j j
D1

( )
1( δ2j j

D2

( )

ρ δ1; δ2ð Þdδ1dδ2 ð4:27Þ

In Eq. (4.27), the correlation between two points within the region is denoted by
ρ(δ1, δ2), in which δ1 and δ2 are orthogonal co-ordinates defining the relative
positions of two points within a cell. In practice, this function is normally defined
as in Eq. (4.28) in which b is a function of response period.

ρ δ1; δ2ð Þ ¼ exp (
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ21 þ δ22

q

b

0

@

1

A ð4:28Þ

The reduction in variance associated with the averaging of the random field is
demonstrated in Fig. 4.16 in which values of γ(D1,D2) are shown for varying values
of the cell dimension and three different values of the range parameter b. For this
example the cells are assumed to be square.

With the expressions for the spatial average and the reduced variance now given,
the final ingredient that is required is the expression for the correlation between the
average motions over two cells (rather than between two points). This is provided in
Eq. (4.29), with the meaning of the distances D1k and D2l shown in Fig. 4.17.
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ρ lnyA1
, lnyA2

$ %
¼ σ2

4A1A2σA1
σA2

X3

k¼0

X3

l¼0

(1ð Þk (1ð Þl D1kD2lð Þ2γ D1k;D2lð Þ ð4:29Þ

The correlations that are generated using this approach are shown in Fig. 4.18 both
in terms of the correlation against separation distance of the cell centroids and in
terms of the correlation against the separation measured in numbers of cells.
Figure 4.18 shows that the correlation values can be significantly higher than the
corresponding point-estimate values (which lie close to the case for the smallest
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Fig. 4.16 Variance function for a regular square grid

Fig. 4.17 Definition of geometry used in Eq. (4.29) (Redrawn from Vanmarcke (1983))
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dimension shown). However, the actual covariances do not differ as significantly
due to the fact that these higher correlations must be combined with the reduced
variances.

4.6 Conclusions

Empirical ground-motion modelling is in a relatively mature state, but the historical
emphasis has been biased towards median predictions with the result that the
characterisation of ground-motion variability has been somewhat neglected. This
paper emphasises the importance of the variance of the ground-motion distribution
and quantifies the sensitivity of hazard results to this variance. The partitioning of
total uncertainty in ground-motion modelling among the components of aleatory
and epistemic uncertainty is also revisited and a proposal is made to relax the
definitions that are often blindly advocated, but not properly understood. A new
approach for selecting an optimal model complexity is proposed. Finally, a new
framework for generating correlated discrete random fields is presented.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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