41 research outputs found

    CD74-downregulation of placental macrophage-trophoblastic interactions in preeclampsia

    Get PDF
    Rationale: MWe hypothesized that Cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. Objective: Preeclamptic pregnancies feature hypertension, proteinuria and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. Methods and Results: We performed whole genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By RT-PCR, we confirmed this finding in early onset (<34 gestational week, n=26) and late onset (≥34 gestational week, n=24) samples from preeclamptic women, compared to healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared to controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naïve and activated macrophages lacking CD74 showed a shift towards a pro-inflammatory signature with an increased secretion of TNF , CCL5, and MCP-1, when co-cultured with trophoblasts compared to control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNF and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas and impaired spiral artery remodeling with fetal growth restriction. Conclusions: CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation towards a pro-inflammatory signature and a disturbed crosstalk with trophoblasts

    Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors

    No full text
    Acute atherosis (Aa) affects uteroplacental spiral arteries in 20-40% of cases of preeclampsia. Its hallmark is lipid-filled, CD68-positive foam cells. It usually develops in the decidua (the pregnancy endometrium) at the distal ends of arteries that are often unremodelled in their proximal segments. Aa resembles the early stages of atherosclerosis, which becomes symptomatic in the middle-aged and elderly, in contrast to the young age of pregnant women with Aa. Although the mechanisms of Aa are largely unknown, they are likely to resemble those of early atherosclerosis, which is an inflammatory lesion of the arterial wall. However, Aa is likely to have added pregnancy-specific features. Because it also occurs in normotensive pregnancies, complicated by foetal growth restriction, diabetes mellitus or autoimmune disease or even without any complications, we suggest that Aa is the final manifestation of several inflammatory processes. We revisit an old proposition that immunological incompatibility between mother and foetus may sometimes induce Aa. We propose that excessive inflammatory activation, of other aetiologies, primarily in the decidua basalis, may explain the different ways in which Aa occurs. We speculate that the subset of women who develop these lesions may be at an increased risk of atherosclerotic arterial disease later in life. We hypothesise that use of anti-atherogenic statins during established preeclampsia may ameliorate Aa, improve uteroplacental perfusion and enhance pregnancy outcome

    Monitoring and evaluating staff support

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:m02/36974 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Decidua basalis and acute atherosis: Expression of atherosclerotic foam cell associated proteins

    No full text
    Introduction Uteroplacental acute atherosis is frequently observed in preeclampsia, and shares features with early atherosclerotic lesions, including artery wall foam cells. The lipid-associated proteins FABP4 (fatty acid binding protein 4), perilipin-2, and LOX-1 (lectin-like oxidized LDL-receptor 1) are involved in atherosclerotic foam cell formation. Increased levels of these proteins have been associated with preeclampsia systemically and in placental tissue. Their role in acute atherosis is yet unidentified. Our aim was to describe the presence of these proteins in acute atherosis, and compare our findings to what is known in early atherosclerotic lesions. Methods Serial sections of decidua basalis tissue from 12 normotensive (4 with acute atherosis) and 23 preeclamptic pregnancies (16 with acute atherosis) were stained with HE and immunostained for CK7, CD68, FABP4, perilipin-2, and LOX-1. Artery wall and perivascular protein expression was assessed in 190 spiral artery sections; 55 with acute atherosis. Results Acute atherosis foam cells were commonly positive for perilipin-2 (55%), less often for FABP4 (13%), and never for LOX-1. LOX-1 was frequently observed in intramural trophoblasts of normal spiral arteries. Perivascularly, LOX-1 positivity of decidual stromal cells surrounding arteries with acute atherosis was significantly increased as compared to arteries lacking acute atherosis (38% vs. 15%, p < 0.001). Discussion We found that perilipin-2 and FABP4 are expressed by acute atherosis foam cells, similar to atherosclerosis, supporting possible shared pathways for foam cell generation. Unlike atherosclerosis, LOX-1 is not present in acute atherosis, possibly explained by pregnancy-specific routes to decidua basalis foam cell generation

    Classical cardiovascular risk markers in pregnancy and associations to uteroplacental acute atherosis

    No full text
    Uteroplacental acute atherosis (AA) is a pregnancy-specific arterial lesion resembling early stages of atherosclerosis. AA is frequent in preeclamptic pregnancies, which associate with increased long-term maternal risk of atherosclerotic cardiovascular disease. We hypothesized that AA in pregnant women associates with classical risk factors for cardiovascular disease, including hypertension, hyperlipidemia, glucose intolerance, elevated C-reactive protein, age, and body mass index. We included 237 women delivered by cesarean section (healthy pregnancies, n=94; preeclampsia, n=87; pregestational and gestational diabetes mellitus, n=39; diabetes mellitus with preeclampsia, n=17). They provided blood before delivery for biomarker analyses. AA was diagnosed by immunohistochemistry in uteroplacental (decidual) tissue collected after placental removal. Statistical analyses were performed with Mann-Whitney test. Levels of traditional cardiovascular markers were not associated with decidual AA within the groups of women with normotensive pregnancies, preeclampsia, diabetes mellitus, or diabetes mellitus superimposed with preeclampsia. However, the oldest patient age quartile (36-43 years old) with AA had significantly higher levels of LDL (low-density lipoprotein) and apolipoprotein B (both P<0.01) than women of the same age without AA. AA was associated with elevated median prepregnancy/early pregnancy systolic blood pressure (P=0.01) in the total cohort, but as preeclampsia was strongly associated with this finding (P<0.01), this was likely caused by a large proportion of preeclamptic pregnancies in the AA group (62.7%). Our findings emonstrate that dyslipidemia associated with cardiovascular risk is a feature of uteroplacental AA in older women, not of AA in pregnancy in general

    Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus

    No full text
    Growth-differentiation factor 15 (GDF-15), a stress-responsive transforming growth factor-beta-related cytokine, is emerging as a new risk marker in patients with cardiovascular disease. We explored GDF-15 in preeclampsia and in diabetic pregnancies, because these conditions are associated with augmented risk for cardiovascular disease, both in mother and in offspring. Plasma from pregnant women (n=267; controls: n=59, preeclampsia: n=85, diabetes mellitus: n=112, and superimposed preeclampsia in diabetes mellitus: n=11), fetal plasma (n=72), and amniotic fluid (n=99) were analyzed by immunoassay for GDF-15. Placental GDF-15 mRNA and protein expression levels were analyzed by quantitative real-time PCR and immunoblots in 78 and 18 pregnancies, respectively. Conditioned media from preeclamptic (n=6) and control (n=6) villous placenta explants were analyzed by immunoassay for GDF-15. Median maternal GDF-15 concentration was elevated in those with diabetes mellitus, as compared with controls (91 549 versus 79 875 ng/L; P=0.02). Median GDF-15 concentration was higher in patients with preeclampsia than in controls in term maternal blood samples (127 061 versus 80 319 ng/L; P<0.001). In the fetal circulation and amniotic fluid, GDF-15 was elevated in preeclampsia and superimposed preeclampsia in diabetes mellitus, as compared with controls. GDF-15 placental mRNA expression was elevated in preeclampsia, as compared with controls (P=0.002). Placenta immunoblots confirmed a single GDF-15 protein band, and a time-dependent increase in GDF-15 protein was detected in the conditioned media. Our study is the first to show that GDF-15 is dysregulated, both in preeclampsia and in diabetic pregnancies. The mechanisms and diagnostic implications of these findings remain to be explored
    corecore