8 research outputs found

    Advancing dendrochronological studies of fire in the United States

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct [2] the historical range and variability of fire regimes (e.g., frequency, severity, seasonality, spatial extent), [3] the influence of fire regimes on forest structure and ecosystem dynamics, and [4] the top-down (e.g., climate) and bottom-up (e.g., fuels, topography) drivers of fire that operate at a range of temporal and spatial scales. As in other scientific fields, continued application of dendrochronological techniques to study fires has shaped new trajectories for the science. Here we highlight some important current directions in the United States (US) and call on our international colleagues to continue the conversation with perspectives from other countries

    The North American tree-ring fire-scar network

    Get PDF
    Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America

    Using Dendroecology to Strengthen the Historic Integrity of Cumberland Homesteads Tower in Crossville, Tennessee

    No full text
    The Cumberland Homesteads Historic District, located on the Cumberland Plateau in East Tennessee, is home to one of the first and largest Homesteads projects attempted during the New Deal era. Although the settlement did not succeed in its original objective, the history of the Cumberland Homesteads has become a valued foundation of the local community, which in turn strives to protect the legacy of the Cumberland Homesteads Tower. To preserve the integrity of the structure as well as the historical integrity of the landscape, the Cumberland Homesteads Tower Association sought to date and potentially remove trees that were not present during the period of significance (prior to 1938). The majority of the trees in close proximity to the Tower were identified as Eastern hemlock (Tsuga canadensis (L.) Carrière) and 15 trees total were sampled. Additionally, three post oak (Quercus stellata Wangenh.) trees located in a historic ‘triangle’ across the highway from the Tower and targeted for removal were sampled. Samples were successfully dated, and ca. half of the hemlock were confirmed to have been planted after the construction of the Homesteads Tower. Additionally, post oaks analyzed near the Tower were dated back to the early 1800s, which motivated their protection in the midst of a road project threatening their survival

    Tree-Ring Based Reconstruction of Historical Fire in an Endangered Ecosystem in the Florida Keys

    No full text
    Big Pine Key, Florida, is home to one of Earth’s largest swaths of the critically-endangered dry forests. Known as pine rocklands, this fire-adapted ecosystem must experience regular fire to persist and remain healthy. Pine rocklands are composed of a sole canopy species: the South Florida slash pine (Pinus elliottii var. densa), along with a dense understory of various woody and herbaceous species, and minimal surface moisture and soil development. Slash pine record wildfire activity of the surrounding area via fire scars preserved within the annual tree rings formed by the species. Our study used dendrochronology to investigate the fire history of the pine rocklands on Big Pine Key, specifically within and around the National Key Deer Refuge (NKDR) because it is the largest segment of unfragmented pine rockland on the island. We combined the results found within the NKDR with those of a previous study completed in 2011, and incorporated historical documents and reports of prescribed and natural fires through November 2019 into our evaluation of fire history on Big Pine Key. We conclude that prescribed burning practices are vital to truly restore natural fire behavior, and repeated burning on these islands in the future must be prioritized

    Tree-Ring Based Reconstruction of Historical Fire in an Endangered Ecosystem in the Florida Keys

    Get PDF
    Big Pine Key, Florida, is home to one of Earth’s largest swaths of the critically-endangered dry forests. Known as pine rocklands, this fire-adapted ecosystem must experience regular fire to persist and remain healthy. Pine rocklands are composed of a sole canopy species: the South Florida slash pine (Pinus elliottii var. densa), along with a dense understory of various woody and herbaceous species, and minimal surface moisture and soil development. Slash pine record wildfire activity of the surrounding area via fire scars preserved within the annual tree rings formed by the species. Our study used dendrochronology to investigate the fire history of the pine rocklands on Big Pine Key, specifically within and around the National Key Deer Refuge (NKDR) because it is the largest segment of unfragmented pine rockland on the island. We combined the results found within the NKDR with those of a previous study completed in 2011, and incorporated historical documents and reports of prescribed and natural fires through November 2019 into our evaluation of fire history on Big Pine Key. We conclude that prescribed burning practices are vital to truly restore natural fire behavior, and repeated burning on these islands in the future must be prioritized

    Comparing the impact of live-tree versus historic-timber data on palaeoenvironmental inferences in tree-ring science, eastern North America

    No full text
    Dendroarchaeological data from historic structures and artefacts have the potential to extend tree-ring chronologies spatially and temporally, especially where old-growth forests have been extensively modified or harvested. While these data may contribute to an improved understanding of past climate and ecology, critical differences in the properties of live-tree and historic-timber data might affect results and interpretations of large-scale studies, such as those relying on large datasets from public databases like the International Tree-Ring Data Bank (ITRDB). The objective of this work was to compare summary measures of live-tree versus historic-timber datasets likely to affect outcomes and inferences of typical paleoenvironmental applications. We used 99 live-tree (LT) and 41 historic-timber (HT) datasets collected in the Appalachian region of the eastern United States and compared common analytical measures for understanding past climate and ecology, including temporal coverage, species composition, recruitment patterns, segment length, series coherence/mean interseries correlation (as Rbar), expressed population signal (EPS), subsample signal strength (SSS) and response to drought and extreme climate events. We found that tree-ring data from historic timbers record some ecological events similarly to live trees and are sensitive to some climate conditions, with important caveats related to the influence of site and tree selection on analytical measures. In some cases, these caveats can be overcome through improved collection of metadata and additional analyses. In all cases, potential differences in LT and HT data should be considered by those who perform large-scale analyses using public tree ring databases, especially as more scientists contribute historic-timber datasets

    The North American tree‐ring fire‐scar network

    No full text
    Abstract Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree‐ring fire scars provide valuable perspectives on fire regimes, including centuries‐long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree‐ring fire‐scar network (NAFSN), which contains 2562 sites, >37,000 fire‐scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000‐m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire‐scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under‐sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non‐Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually‐ to sub‐annually‐resolved tree‐ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America
    corecore