12 research outputs found

    Long distance ion-water interactions in aqueous sulfate nanodrops persist to ambient temperatures in the upper atmosphere.

    Get PDF
    The effect of temperature on the patterning of water molecules located remotely from a single SO42- ion in aqueous nanodrops was investigated for nanodrops containing between 30 and 55 water molecules using instrument temperatures between 135 and 360 K. Magic number clusters with 24, 36 and 39 water molecules persist at all temperatures. Infrared photodissociation spectroscopy between 3000 and 3800 cm-1 was used to measure the appearance of water molecules that have a free O-H stretch at the nanodroplet surface and to infer information about the hydrogen bonding network of water in the nanodroplet. These data suggest that the hydrogen bonding network of water in nanodrops with 45 water molecules is highly ordered at 135 K and gradually becomes more amorphous with increasing temperature. An SO42- dianion clearly affects the hydrogen bonding network of water to at least ∼0.71 nm at 135 K and ∼0.60 nm at 340 K, consistent with an entropic drive for reorientation of water molecules at the surface of warmer nanodrops. These distances represent remote interactions into at least a second solvation shell even with elevated instrumental temperatures. The results herein provide new insight into the extent to which ions can structurally perturb water molecules even at temperatures relevant to Earth's atmosphere, where remote interactions may assist in nucleation and propagation of nascent aerosols

    Sense of belonging within the graduate community of a research-focused STEM department: Quantitative assessment using a visual narrative and item response theory.

    No full text
    It is well-documented that the representation of women and racial/ethnic minorities diminishes at higher levels of academia, particularly in science, technology, engineering, and math (STEM). Sense of belonging-the extent to which an individual believes they are accepted, valued, and included in a community-is often emphasized as an important predictor of retention throughout academia. While literature addressing undergraduate sense of belonging is abundant, there has been little investigation of sense of belonging in graduate communities. Because graduate training is required to generate new scientific leaders, it is important to understand and address sense of belonging at the graduate level-paying explicit attention to devising strategies that can be used to increase representation at higher levels of academia. Here, a visual narrative survey and item response modeling are used to quantify sense of belonging among graduate students, postdoctoral researchers, and faculty within the Department of Chemistry at the University of California, Berkeley. Results suggest that graduate students, postdoctoral researchers, and faculty all experience impostor phenomenon. Respondents struggle most with maintaining positive self-perceptions of their productivity, capabilities as a scientist, and success-particularly in comparison to their peers. Communicating about science with peers, talking about teaching hurdles, and engaging in mentoring relationships also contribute significantly to sense of belonging. Faculty members have the highest sense of belonging, while senior graduate students and postdoctoral researchers are least likely to feel a sense of belonging. Additionally, graduate students and postdoctoral researchers who identify as underrepresented, as well as those who submit manuscripts for publication less than their peers, are less likely to feel a sense of belonging. This is the first study to generate a quantitative, nuanced understanding of sense of belonging within the entire graduate academic community of an R1 STEM department. We envision that these methods can be implemented within any research-focused academic unit to better understand the challenges facing community members and identify factors to address in promoting positive culture change. Furthermore, these methods and results should provide a foundation for devising interventions that academic stakeholders can use to directly improve graduate education

    Sense of belonging within the graduate community of a research-focused STEM department: Quantitative assessment using a visual narrative and item response theory.

    No full text
    It is well-documented that the representation of women and racial/ethnic minorities diminishes at higher levels of academia, particularly in science, technology, engineering, and math (STEM). Sense of belonging-the extent to which an individual believes they are accepted, valued, and included in a community-is often emphasized as an important predictor of retention throughout academia. While literature addressing undergraduate sense of belonging is abundant, there has been little investigation of sense of belonging in graduate communities. Because graduate training is required to generate new scientific leaders, it is important to understand and address sense of belonging at the graduate level-paying explicit attention to devising strategies that can be used to increase representation at higher levels of academia. Here, a visual narrative survey and item response modeling are used to quantify sense of belonging among graduate students, postdoctoral researchers, and faculty within the Department of Chemistry at the University of California, Berkeley. Results suggest that graduate students, postdoctoral researchers, and faculty all experience impostor phenomenon. Respondents struggle most with maintaining positive self-perceptions of their productivity, capabilities as a scientist, and success-particularly in comparison to their peers. Communicating about science with peers, talking about teaching hurdles, and engaging in mentoring relationships also contribute significantly to sense of belonging. Faculty members have the highest sense of belonging, while senior graduate students and postdoctoral researchers are least likely to feel a sense of belonging. Additionally, graduate students and postdoctoral researchers who identify as underrepresented, as well as those who submit manuscripts for publication less than their peers, are less likely to feel a sense of belonging. This is the first study to generate a quantitative, nuanced understanding of sense of belonging within the entire graduate academic community of an R1 STEM department. We envision that these methods can be implemented within any research-focused academic unit to better understand the challenges facing community members and identify factors to address in promoting positive culture change. Furthermore, these methods and results should provide a foundation for devising interventions that academic stakeholders can use to directly improve graduate education

    Grassroots Efforts To Quantify and Improve the Academic Climate of an R1 STEM Department: Using Evidence-Based Discussions To Foster Community.

    No full text
    Women and some racial and ethnic groups remain underrepresented in chemistry departments across the United States, and generally, efforts to improve representation have resulted in minimal or no improvements in the last 10 years. Here, we present the outcomes of a graduate-student-led initiative that sought to assess the issues affecting inclusivity, diversity, and wellness within the Department of Chemistry at the University of California, Berkeley. We report how the results of a department-tailored academic climate survey were used to develop a method to foster open, productive discussion among graduate students, postdoctoral researchers, and faculty. This event format led to an improved understanding of the challenges facing our community members, as well as the identification of strategies that can be used to make the Department of Chemistry more welcoming for all members. We report the success of this student-led effort to highlight the value of assessing diversity and inclusion at the department-level, as well as the benefits of using community data to stimulate productive, evidence-based discussions. Furthermore, we envision that these methods can be implemented within any research-focused academic community to promote positive cultural change
    corecore